
Hunting for log4shell compromises

2022 TF-CSIRT Meeting & FIRST Regional Symposium Europe

Table of contents

1. Introductions

2. A christmas tale

3. Some background

4. A sea and a bucket

5. A Tale of two organizations

6. A gift that keeps giving

7. Acknowledgments and indictments

8. Resources

2

1

Introductions

Who I am

4

I'm José Ángel García, Senior Incident Handler in SIA

CERT. Involved with cyber security since my final year in

university and work in different SOCs during my whole

professional career since 2013.

Since 2018 I have been working for the SIA CERT, where

we assist public and private organizations in the whole

incident handling life cycle.

2

A christmas tale

Log4Shell is the Grinch

CVE-2021-44228 "log4shell" affecting java library log4j was revealed on December 10th 2021. Allowing

an unskilled attacker to embed arbitrary code in the user agent field of a request

Notes:

• Revealed on Thursday and not trivial to patch

• Understaffed teams due to the impending holydays and COVID

• In most cases, real mitigation efforts weren't taken until Monday

13th

• So easy to exploit widespread vulnerability left alone for

the weekend. What can go wrong?

6

Why IRT was activated

• Public exploit available

• Rumors of log4shell used as 0 day on targeted attacks

• Strained detection teams couldn’t take point

• The IRT was activated to supplement local teams

• This is the story of how our team approached this task

7

3

Some background

Apache Log4j is everywhere

• Apache log4j is one of the main logging frameworks for Java

• Not only used by webservers, also by other products such as:

o CISCO: firepower, Webex, CloudCenter Suite Admin, Data Center Network Manager, IoT Control Center, Network

Services Orchestrator, WAN Automation Engine, …

o AWS: Amazon Web Services

o IBM: IBM Java Runtime (Qradar: User Behavioral Analytics)

o Fortinet: FortiCASB, FortiConverter Portal, and FortiCWP, FortiEDR

o VMware: 40 VMware products are vulnerable to RCE

9

Timeline

• 2013 The lookup feature is introduced in log4j

• 2014 Issues of compatibility arise an the %m{nolookups} is introduced

• 2016 A Black Hat talk analyzes the risk of jndi lookups of untrusted resources

o LDAP: JNDI reference, Serialized Object, Remote location

o RMI: JNDI reference, Remote Object

o CORBA: IOR

o Ref: https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-

RCE.pdf

• December 1st 2021 first attempts of exploiting log4 as reported by CloudFlare

• December 10th 2021 Apache releases CVE-2021-44228 notification

10

https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE.pdf

How Loj4shell works

11

4

A sea and a bucket

Compromise assessment vs threat hunting

Threat hunting

• It is a planned activity

• Uses methods of detection currently

available

• Reports:

• At the end of the activity

• When malicious activity is found

13

Compromise assessment

• Not planned

• Supplementary methods are used

• Reports:

• Daily reports

• Notify any malicious activity

• Involve the local team as much as possible

• Check an entire organization is very

different than to check a couple systems

o There is a time limit

o A plan is needed

• Several issues arise:

o Web server logs are not indexed or centralized

o Several appliances are also affected

How to start

14

Iterative approach

1 Identify useful log sources

2 Start with a set of basic detection rules

• In this case something like jndi:ldap

3 Identify the IOCs

4 Improve rule set to cover all log4shell activity ie:

• ${::-j}ndi:dns:

• $%7B$%7B::-j%7Dnd$%7B::-i%7D:ldap:

5 Run the new rules

6 Back to step 2

(?:\$|%(?:25)*24|\\(?:0024|0{0,2}44))(?:{|%(?:25)*7[Bb]|\\(?:007[Bb]|0{0,2}173
)).{0,30}?((?:[Jj]|%(?:25)*[46][Aa]|\\(?:00[46][Aa]|0{0,2}1[15]2)).{0,30}?(?:[
Nn]|%(?:25)*[46][Ee]|\\(?:00[46][Ee]|0{0,2}1[15]6)).{0,30}?(?:[Dd]|%(?:25)*[46
]4|\\(?:00[46]4|0{0,2}1[04]4)).{0,30}?(?:[Ii]|%(?:25)*[46]9|\\(?:00[46]9|0{0,2

}1[15]1)|ı).{0,30}?(?::|%(?:25)*3[Aa]|\\(?:003[Aa]|0{0,2}72)).{0,30}?((?:[Ll]|
%(?:25)*[46][Cc]|\\(?:00[46][Cc]|0{0,2}1[15]4)).{0,30}?(?:[Dd]|%(?:25)*[46]4|\
\(?:00[46]4|0{0,2}1[04]4)).{0,30}?(?:[Aa]|%(?:25)*[46]1|\\(?:00[46]1|0{0,2}1[0
4]1)).{0,30}?(?:[Pp]|%(?:25)*[57]0|\\(?:00[57]0|0{0,2}1[26]0))(?:.{0,30}?(?:[S
s]|%(?:25)*[57]3|\\(?:00[57]3|0{0,2}1[26]3)))?|(?:[Rr]|%(?:25)*[57]2|\\(?:00[5

7]2|0{0,2}1[26]2)).{0,30}?(?:[Mm]|%(?:25)*[46][Dd]|\\(?:00[46][Dd]|0{0,2}1[15]
5)).{0,30}?(?:[Ii]|%(?:25)*[46]9|\\(?:00[46]9|0{0,2}1[15]1)|ı)|(?:[Dd]|%(?:25)
[46]4|\\(?:00[46]4|0{0,2}1[04]4)).{0,30}?(?:[Nn]|%(?:25)[46][Ee]|\\(?:00[46]
[Ee]|0{0,2}1[15]6)).{0,30}?(?:[Ss]|%(?:25)*[57]3|\\(?:00[57]3|0{0,2}1[26]3))|(
?:[Nn]|%(?:25)*[46][Ee]|\\(?:00[46][Ee]|0{0,2}1[15]6)).{0,30}?(?:[Ii]|%(?:25)*

[46]9|\\(?:00[46]9|0{0,2}1[15]1)|ı).{0,30}?(?:[Ss]|%(?:25)*[57]3|\\(?:00[57]3|
0{0,2}1[26]3))|(?:.{0,30}?(?:[Ii]|%(?:25)*[46]9|\\(?:00[46]9|0{0,2}1[15]1)|ı))
{2}.{0,30}?(?:[Oo]|%(?:25)*[46][Ff]|\\(?:00[46][Ff]|0{0,2}1[15]7)).{0,30}?(?:[
Pp]|%(?:25)*[57]0|\\(?:00[57]0|0{0,2}1[26]0))|(?:[Cc]|%(?:25)*[46]3|\\(?:00[46
]3|0{0,2}1[04]3)).{0,30}?(?:[Oo]|%(?:25)*[46][Ff]|\\(?:00[46][Ff]|0{0,2}1[15]7

)).{0,30}?(?:[Rr]|%(?:25)*[57]2|\\(?:00[57]2|0{0,2}1[26]2)).{0,30}?(?:[Bb]|%(?
:25)*[46]2|\\(?:00[46]2|0{0,2}1[04]2)).{0,30}?(?:[Aa]|%(?:25)*[46]1|\\(?:00[46
]1|0{0,2}1[04]1))|(?:[Nn]|%(?:25)*[46][Ee]|\\(?:00[46][Ee]|0{0,2}1[15]6)).{0,3
0}?(?:[Dd]|%(?:25)*[46]4|\\(?:00[46]4|0{0,2}1[04]4)).{0,30}?(?:[Ss]|%(?:25)*[5
7]3|\\(?:00[57]3|0{0,2}1[26]3))|(?:[Hh]|%(?:25)*[46]8|\\(?:00[46]8|0{0,2}1[15]

0))(?:.{0,30}?(?:[Tt]|%(?:25)*[57]4|\\(?:00[57]4|0{0,2}1[26]4))){2}.{0,30}?(?:
[Pp]|%(?:25)*[57]0|\\(?:00[57]0|0{0,2}1[26]0))(?:.{0,30}?(?:[Ss]|%(?:25)*[57]3
|\\(?:00[57]3|0{0,2}1[26]3)))?).{0,30}?(?::|%(?:25)*3[Aa]|\\(?:003[Aa]|0{0,2}7
2)).{0,30}?(?:\/|%(?:25)*2[Ff]|\\(?:002[Ff]|0{0,2}57)|\${)|(?:[Bb]|%(?:25)*[46
]2|\\(?:00[46]2|0{0,2}1[04]2)).{0,30}?(?:[Aa]|%(?:25)*[46]1|\\(?:00[46]1|0{0,2

}1[04]1)).{0,30}?(?:[Ss]|%(?:25)*[57]3|\\(?:00[57]3|0{0,2}1[26]3)).{0,30}?(?:[
Ee]|%(?:25)*[46]5|\\(?:00[46]5|0{0,2}1[04]5)).{2,60}?(?::|%(?:25)*3[Aa]|\\(?:0
03[Aa]|0{0,2}72))(JH[s-v]|[\x2b\x2f-9A-Za-z][CSiy]R7|[\x2b\x2f-9A-Za-
z]{2}[048AEIMQUYcgkosw]ke[\x2b\x2f-9w-z]))

Final rule

In the end a comprehensive detection rule will

emerge

• This is just an example for a regulrar
expression

o Yara rules

o SIEM queries

o Splunk queries

o Elastic queries

• Thanks to Florian Roth that provide us with the

base

o https://gist.github.com/Neo23x0/e4c8b03ff8cdf1fa

63b7d15db6e3860b

https://gist.github.com/Neo23x0/e4c8b03ff8cdf1fa63b7d15db6e3860b

Filtering hits

• Everybody was trying to exploit the vulnerability

• Impossible to do a full DFIR on every impacted

resource

• Better idea to look for the second stage:

o Outgoing connections can be checked on the SIEM or

EDR

o However, direct access to the firewall logs is better

• A dedicated workstation or server for its analysis is

advisable

17

5

A Tale of Two Organizations

Different folks, (mostly) same approach

• All the previous is fine but no plan survives

reality

• The following factors had to be

accommodated:

o Different levels of maturity

o Different sectors

o Single country vs multinational

o Organizational culture

19

• Healthcare sector

• Simple well though network architecture:

o Only one real egress point for the organization

o 2 years of logs on everything

o Everything in house: no cloud, no nonsense

• Not all the old-school things are good:

o No remote access, the team was deployed in person

o No EDR

o No real SIEM to speak about (grep everything)

Organization 1: old school but still cool

Log4shell December 1st to
19th

other than 200 200 OK

Organization 1: investigation results

Thousands of log4shell requests. No second stage

activity was found, the request seem scan like.

Three main sources of data:

• Web server logs

• Regex and Yara search all of them

• DMZ firewalls

• Look for the incoming IOCs

• Look for the payload distribution IOCs

• Proxy logs

• Outgoing connections to payload distribution IOCs

21

• Energy sector

• Complex network architecture

o Multiple egress points

o Difficult to trace one request end to end

o Shadow IT

o Complex chain of command

• Good usage of security technologies

o Good coverage of EDR

o Real SIEM

o Threat hunting processes already in place

o Already established relation with the local team

Organization 2: one body a hundred heads

22

Organization 2: adapt and overcome

• 2 challenges:

o There is no full access to all the requests logs

o Difficulty to trace back second stage activity

• Use EDR to look for exploitation related activity:

o Commands related with Log4Shell exploitation

o Connections or commands launched from Java parent process

o Commands launched from Java parent process and contains an IP in

command line

• PaloAlto Panorama and SIEM to trace back connections

o Queries looking for activity associated with second stage IOCs were created

and run

23

Organization 2: investigation results

No activity related to successful exploitation was found.

Main data sources:

• Web server logs

o Application logs were indexed in ES

o Regex all of them

• EDR

o Look suspicious process activity

o Outgoing connections to

• PaloAlto Panorama

o Outgoing connections to payload distribution iocs

24

6

A gift that keeps giving

A vulnerability for years to come

26

We are going to see this vulnerability to compromise internal systems:

Mainly patched in the

perimeter

The vulnerability can be

used for lateral

movement by attackers

Shadow IT and incomplete

CMDBs guarantee that this

vulnerability will persist in

the future

Legacy environments may

not allow the application of

patches or mitigations

Use of illegal copies or out

of support software that

can't be patched

7

Acknowledgments

Acknowledgments and indictments

• To Alvaro Muñoz & Oleksandr Mirosh for they

work on lookups an RCE in Java

• Florian Roth for the wealth of detection

rules provided

• To my co-workers involved in this

investigation

• Jose Alberto López

• Sergio Sanz

• Javier Garcia

• To Abel Gonzalez to put me up for this talk

28

8

Resources

EDR Queries (CrowdStrike)

Descripción Query

processes that run a
possible Log4Shell

payload

event_simpleName IN (ProcessRollup2, SyntheticProcessRollup2)
| fields ProcessStartTime_decimal ComputerName FileName CommandLine

| search CommandLine="*jndi:ldap:*" OR CommandLine="*jndi:rmi:*" OR CommandLine="*jndi:ldaps:*" OR

CommandLine="*jndi:dns:*" OR CommandLine="*jndi:iiop:*"

| rex field=CommandLine ".*(?<stringOfInterest>\$\{jndi\:(ldap|rmi|ldaps|dns|iiop)\:.*\}).*"

| table ProcessStartTime_decimal ComputerName FileName stringOfInterest CommandLine

connections or
processes launched

from Java parent

process

(index=main sourcetype=ProcessRollup* event_simpleName=ProcessRollup2 ParentBaseFileName IN (java)
FileName IN (sh, bash, dash, ksh, tcsh, zsh, curl, python, ruby, php, wget)) OR (index=main

sourcetype=NetworkConnectIP4 event_simplename=NetworkConnectIP4 RemotePort_decimal IN (1389, 389, 1099,

53, 5353, 80, 443)) | eval falconPID=mvappend(TargetProcessId_decimal,ContextProcessId_decimal) | table

ComputerName ParentBaseFileName FileName CommandLine RemoteIP RemotePort_decimal

commands and
scripts launched

from Java process

and contains an IP in

command line

(index=main sourcetype=ProcessRollup* event_simpleName=ProcessRollup2 ParentBaseFileName IN (java)
FileName IN (sh, bash, dash, ksh, tcsh, zsh, curl, python, ruby, php*, wget)) | where match (CommandLine, "([0-

9]{1,3}[.]){3}[0-9]{1,3}") | eval falconPID=mvappend(TargetProcessId_decimal,ContextProcessId_decimal) | table

ComputerName ParentBaseFileName FileName CommandLine RemoteIP RemotePort_decimal

30

ElastichSearch Queries

Descripción Query

suspicious errors in
application logs

message:"Error looking up JNDI resource" OR message:"FATAL log4j - Message: BadAttributeValueException: " OR
message:"header with value of BadAttributeValueException: " OR

message:".log4j.core.net.JndiManager.lookup(JndiManager"

31

Yara Queries

Descripción Query

Set of yara rules for
detecting log4shell

https://github.com/flypig5211/JNDIExploit

32

https://github.com/flypig5211/JNDIExploit

PaloAlto Panorama Query

33

Descripción Query

Activity according to
threatid

((threatid eq 91991) or (threatid eq 91994) or (threatid eq 91995))

PaloAlto Panorama Query

34

Descripción Query

Linux systems dpkg –l | egrep ‘liblog4j|log4’

find / -name log4j-core-*.jar

Locate log4j | grep –v log4js

Java 8 : versión < 2.17.x

Java 7: versión < 2.12.2

Windows $RESULT=(C:\ProgramData\checkmk\agent\bin\log4j2-scan.exe --all-drives)

$FILES_VUL=((echo $RESULT | Select-String -Pattern "vulnerable files" | Select-String -Pattern "potentially vulnerable files" -NotMatch | Select-

String -Pattern "Fixed" -NotMatch) -split ' ')[1]

$FILES_POTVUL=((echo $RESULT | Select-String -Pattern "potentially vulnerable files") -split ' ')[1]

$FILES_MIT=((echo $RESULT | Select-String -Pattern "mitigated files") -split ' ')[1]
$SCANNED=(echo $RESULT | Select-String -Pattern "Scanned" | Select-String -Pattern "Running scan" -NotMatch)

$RUNTIME=((echo $RESULT | Select-String -Pattern "Completed in") -split ' ')[2]

$DRIVES_SCANNED=((echo $RESULT | Select-String -Pattern "Scanning drives") -split ' ')[2]

$SHORT="Files: $FILES_VUL vulnerable, $FILES_POTVUL potentially vulnerable, $FILES_MIT mitigated, $SCANNED, Runtime: $RUNTIME s,

drives: $DRIVES_SCANNED"
$PERFDATA="vulnerable=$FILES_VUL;1;1|potential_vulnerable=$FILES_POTVUL;1;1|mitigated=$FILES_MIT;;|real_time=${RUNTIME};;;1;"

$LONG=$RESULT -join "\n"

if someone needs the count metric uncomment the next line (count and vulnerable metric are identical)

#$PERFDATA="count=$FILES_VUL;1;1|vulnerable=$FILES_VUL;1;1|potential_vulnerable=$FILES_POTVUL;1;1|mitigated=$FILES_MIT;;|real_time=${RU

NTIME};;;1;"
echo "P CVE-2021-44228_log4j $PERFDATA$SHORT\n$LONG"

B E Y O N D C Y B E R S E C U R I T Y

Thanks for your time

