
The OWASP Foundation
http://www.owasp.org

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

Appsec USA
Minneapolis, MN

September 23, 2011

OWASP Top 10
Mobile Risks

Jack Mannino, nVisium Security
Mike Zusman, Carve Systems
Zach Lanier, Intrepidus Group

OWASP Mobile Security Project

2

Agenda
• Introductions

• Mobile Security
Project

• Mobile Threat
Model

• Top 10 Risks

• Wrap Up/Q&A

3

Introductions

Jack Mannino

• nVisium Security

• CEO

• https://www.nvisiumsecurity.com

Mike Zusman

• Carve Systems

• Principal
Consultant

• http://www.carvesystems.com

Zach Lanier

• Intrepidus Group

• Principal
Consultant

• https://intrepidusgroup.com

https://www.nvisiumsecurity.com
https://www.nvisiumsecurity.com
http://www.carvesystems.com
http://www.carvesystems.com
https://intrepidousgroup.com

4

Mobile Security Project

• Began Q3 2010

• Why Unique and

different security risks

• Goal To build security

into mobile dev. life cycle

• Interested? Contribute

Threat Model

Dev. Guide

Training

Controls

Risks

Secure Libraries

Methodologies

Tools

Cheat Sheets

Mobile Threat Model

6

Mobile Threat Model

• Platforms vary with mileage

• Very different from traditional web app
model due to wildly varying use cases
and usage patterns

• Must consider more than the ‘apps’

• Remote web services

• Platform integration (iCloud, C2DM)

• Device (in)security considerations

7

Mobile Threat Model

8

Mobile Threat Model

Top 10 Risks

10

Top 10 Risks

• Intended to be platform-agnostic

• Focused on areas of risk rather than
individual vulnerabilities

• Weighted utilizing the OWASP Risk
Rating Methodology

• https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

• Thanks to everyone who participated

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

11

Top 10 Risks

12

M1- Insecure Data Storage

• Sensitive data left unprotected

• Applies to locally stored data +
cloud synced

• Generally a result of:

• Not encrypting data

• Caching data not intended for long-term
storage

• Weak or global permissions

• Not leveraging platform best-practices

Impact

• Confidentiality
of data lost

• Credentials
disclosed

• Privacy
violations

• Non-
compliance

13

M1- Insecure Data Storage

14

M1- Insecure Data Storage
Prevention Tips

• Store ONLY what is absolutely
required

• Never use public storage areas (ie-
SD card)

• Leverage secure containers and
platform provided file encryption
APIs

• Do not grant files world readable or
world writeable permissions

Control

Description

1.1-1.14 Identify and protect
sensitive data on the mobile
device

2.1, 2.2,
2.5

Handle password
credentials securely on the
device

15

M2- Weak Server Side Controls

• Applies to the backend services

• Not mobile specific per se, but
essential to get right

• We still can’t trust the client

• Luckily, we understand these
issues well

• Existing controls may need to be
re-evaluated (ie- out of band
comms)

Impact

• Confidentially
of data lost

• Integrity of
data not
trusted

16

M2- Weak Server Side Controls

OWASP Top 10

• https://www.owasp.org/index.php/Category:O
WASP_Top_Ten_Project

OWASP Cloud Top 10

• https://www.owasp.org/images/4/47/Cloud-
Top10-Security-Risks.pdf

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf

17

M2- Weak Server Side Controls
Prevention Tips

• Understand the additional risks
mobile apps introduce into existing
architectures

• Leverage the wealth of knowledge
that is already out there

• OWASP Web Top 10, Cloud Top
10, Web Services Top 10

• Cheat sheets, development guides,
ESAPI

Control

Description

5.1-5.8 Keep the backend APIs
(services) and the platform
(server) secure

18

M3- Insufficient Transport Layer Protection

• Complete lack of encryption for
transmitted data

• Yes, this unfortunately happens often

• Weakly encrypted data in transit

• Strong encryption, but ignoring
security warnings

• Ignoring certificate validation errors

• Falling back to plain text after failures

Impact

• Man-in-the-
middle attacks

• Tampering w/
data in transit

• Confidentiality
of data lost

19

M3- Insufficient Transport Layer Protection

Real World Example: Google ClientLogin
Authentication Protocol

• Authorization header sent over HTTP

• When users connected via wifi, apps
automatically sent the token in an attempt
to automatically synchronize data from
server

• Sniff this value, impersonate the user
• http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html

http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html

20

M3- Insufficient Transport Layer Protection
Prevention Tips

• Ensure that all sensitive data
leaving the device is
encrypted

• This includes data over carrier
networks, WiFi, and even NFC

• When security exceptions are
thrown, it’s generally for a
reason…DO NOT ignore them!

Control

Description

3.1.3.6 Ensure sensitive data is
protected in transit

21

M4- Client Side Injection

• Apps using browser libraries

• Pure web apps

• Hybrid web/native apps

• Some familiar faces

• XSS and HTML Injection

• SQL Injection

• New and exciting twists

• Abusing phone dialer + SMS

• Abusing in-app payments

Impact

• Device
compromise

• Toll fraud

• Privilege
escalation

22

M4- Client Side Injection

Garden Variety XSS…. With access to:

23

M4- Client Side Injection
Prevention Tips

• Sanitize or escape untrusted data
before rendering or executing it

• Use prepared statements for
database calls…concatenation is
still bad, and always will be bad

• Minimize the sensitive native
capabilities tied to hybrid web
functionality

Control

Description

6.3 Pay particular attention to
validating all data received
from and sent to non-
trusted third party apps
before processing

10.1-
10.5

Carefully check any runtime
interpretation of code for
errors

24

M5- Poor Authorization and Authentication

• Part mobile, part architecture

• Some apps rely solely on
immutable, potentially
compromised values (IMEI, IMSI,
UUID)

• Hardware identifiers persist across
data wipes and factory resets

• Adding contextual information is
useful, but not foolproof

Impact

• Privilege
escalation

• Unauthorized
access

25

M5- Poor Authorization and Authentication

26

M5- Poor Authorization and Authentication
Prevention Tips

• Contextual info can enhance
things, but only as part of a
multi-factor implementation

• Out-of-band doesn’t work
when it’s all the same device

• Never use device ID or
subscriber ID as sole
authenticator

Control

Description

4.1-4.6 Implement user
authentication/authorization
and session management
correctly

8.4 Authenticate all API calls to
paid resources

27

M6- Improper Session Handling

• Mobile app sessions are generally
MUCH longer

• Why? Convenience and usability

• Apps maintain sessions via

• HTTP cookies

• OAuth tokens

• SSO authentication services

• Bad idea= using a device identifier
as a session token

Impact

• Privilege
escalation

• Unauthorized
access

• Circumvent
licensing and
payments

28

M6- Improper Session Handling
Prevention Tips

• Don’t be afraid to make users
re-authenticate every so often

• Ensure that tokens can be
revoked quickly in the event
of a lost/stolen device

• Utilize high entropy, tested
token generation resources

Control

Description

1.13 Use non-persistent
identifiers

4.1-4.6 Implement user
authentication/authorization
and session management
correctly

29

M7- Security Decisions Via Untrusted Inputs

• Can be leveraged to bypass
permissions and security models

• Similar but different depending on
platform

• iOS- Abusing URL Schemes

• Android- Abusing Intents

• Several attack vectors

• Malicious apps

• Client side injection

Impact

• Consuming
paid resources

• Data
exfiltration

• Privilege
escalation

30

M7- Security Decisions Via Untrusted Inputs

Skype iOS URL Scheme Handling Issue

• http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/

http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/

31

M7- Security Decisions Via Untrusted Inputs
Prevention Tips

• Check caller’s permissions at
input boundaries

• Prompt the user for additional
authorization before allowing

• Where permission checks
cannot be performed, ensure
additional steps required to
launch sensitive actions

Control

Description

10.2 Run interpreters at minimal
privilege levels

32

M8- Side Channel Data Leakage

• Mix of not disabling platform features and
programmatic flaws

• Sensitive data ends up in unintended places

• Web caches

• Keystroke logging

• Screenshots (ie- iOS backgrounding)

• Logs (system, crash)

• Temp directories

• Understand what 3rd party libraries in your
apps are doing with user data
(ie- ad networks, analytics)

Impact

• Data retained
indefinitely

• Privacy
violations

33

M8- Side Channel Data Leakage

Logging

Screenshots

34

M8- Side Channel Data Leakage
Prevention Tips

• Never log credentials, PII, or other sensitive data to
system logs

• Remove sensitive data before screenshots are taken,
disable keystroke logging per field, and utilize anti-
caching directives for web content

• Debug your apps before releasing them to observe
files created, written to, or modified in any way

• Carefully review any third party libraries you
introduce and the data they consume

• Test your applications across as many platform
versions as possible

Control

Description

7.3 Check whether you are
collecting PII, it may not
always be obvious

7.4 Audit communication
mechanisms to check for
unintended leaks (e.g.
image metadata)

35

M9- Broken Cryptography

• Two primary categories

• Broken implementations using strong
crypto libraries

• Custom, easily defeated crypto
implementations

• Encoding != encryption

• Obfuscation != encryption

• Serialization != encryption

Impact

• Confidentiality
of data lost

• Privilege
escalation

• Circumvent
business logic

36

M9- Broken Cryptography

ldc literal_876:"QlVtT0JoVmY2N2E=”

invokestatic byte[] decode(java.lang.String)

invokespecial_lib java.lang.String.<init> // pc=2

astore 8

private final byte[]

com.picuploader.BizProcess.SendRequest.routine_12998

 (com.picuploader.BizProcess.SendRequest, byte[], byte[]);

 {

 enter

 new_lib net.rim.device.api.crypto.TripleDESKey

37

M9- Broken Cryptography
Prevention Tips

• Storing the key with the
encrypted data negates
everything

• Leverage battle-tested crypto
libraries vice writing your own

• Take advantage of what your
platform already provides!

Control

Description

1.3 Utilize file encryption API’s

2.3 Leverage secure containers

38

M10- Sensitive Information Disclosure

• We differentiate by stored (M1) vs.
embedded/hardcoded (M10)

• Apps can be reverse engineered
with relative ease

• Code obfuscation raises the bar, but
doesn’t eliminate the risk

• Commonly found “treasures”:

• API keys

• Passwords

• Sensitive business logic

Impact

• Credentials
disclosed

• Intellectual
property
exposed

39

M10- Sensitive Information Disclosure

40

M10- Sensitive Information Disclosure
Prevention Tips

• Private API keys are called that
for a reason…keep them off of
the client

• Keep proprietary and sensitive
business logic on the server

• Almost never a legitimate reason
to hardcode a password (if there
is, you have other problems)

Control

Description

2.10 Do not store any passwords
or secrets in the application
binary

Wrap Up

42

Going Forward

• 60 day review period open to the public

• RC1 then becomes ‘Final v1.0’

• 12 month revision cycle

• Rapidly evolving platforms

• Stale data = not as useful

• If you have suggestions or ideas, we
want them!

43

Conclusion

• This is a good start, but we have a long
way to go

• We’ve identified the issues…now we
have to fix them

• Platforms must mature, frameworks
must mature, apps must mature

• The OWASP Mobile body of knowledge
must grow

44

Q&A

Thanks for listening!

• Jack Mannino jack@nvisiumsecurity.com
http://twitter.com/jack_mannino

• Zach Lanier zach.lanier@intrepidusgroup.com
http://twitter.com/quine

• Mike Zusman mike.zusman@carvesystems.com
http://twitter.com/schmoilito

mailto:jack@nvisiumsecurity.com
http://twitter.com/jack_mannino
mailto:zach.lanier@intrepidusgroup.com
http://twitter.com/quine
mailto:mike.zusman@carvesystems.com
http://twitter.com/schmoilito

