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Introductions 

Jack Mannino 

• nVisium Security 

• CEO 

• https://www.nvisiumsecurity.com 

 

Mike Zusman 

• Carve Systems 

• Principal 
Consultant 

• http://www.carvesystems.com 

 

Zach Lanier 

• Intrepidus Group 

• Principal 
Consultant 

• https://intrepidusgroup.com 

https://www.nvisiumsecurity.com
https://www.nvisiumsecurity.com
http://www.carvesystems.com
http://www.carvesystems.com
https://intrepidousgroup.com
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Mobile Security Project 

• Began Q3 2010 

• Why Unique and 

different security risks 

• Goal To build security 

into mobile dev. life cycle 

• Interested? Contribute 

Threat Model 

Dev. Guide 

Training 

Controls 

Risks 

Secure Libraries 

Methodologies 

Tools 

Cheat Sheets 



Mobile Threat Model 
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Mobile Threat Model 

• Platforms vary with mileage 

• Very different from traditional web app 
model due to wildly varying use cases 
and usage patterns 

• Must consider more than the ‘apps’ 

• Remote web services 

• Platform integration (iCloud, C2DM) 

• Device (in)security considerations 
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Mobile Threat Model 
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Mobile Threat Model 



Top 10 Risks 



10 

Top 10 Risks 

• Intended to be platform-agnostic 

• Focused on areas of risk rather than 
individual vulnerabilities 

• Weighted utilizing the OWASP Risk 
Rating Methodology 

• https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology 

• Thanks to everyone who participated 

 

 

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
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Top 10 Risks 
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M1- Insecure Data Storage 

• Sensitive data left unprotected 

• Applies to locally stored data + 
cloud synced 

• Generally a result of:  

• Not encrypting data 

• Caching data not intended for long-term 
storage 

• Weak or global permissions 

• Not leveraging platform best-practices 

 

Impact 

• Confidentiality 
of data lost 

• Credentials 
disclosed 

• Privacy 
violations 

• Non-
compliance 
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M1- Insecure Data Storage 
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M1- Insecure Data Storage 
Prevention Tips 

• Store ONLY what is absolutely 
required 

• Never use public storage areas (ie- 
SD card) 

• Leverage secure containers and 
platform provided file encryption 
APIs 

• Do not grant files world readable or 
world writeable permissions 

 

Control
# 

Description 

1.1-1.14 Identify and protect 
sensitive data on the mobile 
device 

2.1, 2.2, 
2.5 

Handle password 
credentials securely on the 
device 
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M2- Weak Server Side Controls 

• Applies to the backend services 

• Not mobile specific per se, but 
essential to get right 

• We still can’t trust the client 

• Luckily, we understand these 
issues well 

• Existing controls may need to be 
re-evaluated (ie- out of band 
comms) 

 

Impact 

• Confidentially 
of data lost 

• Integrity of 
data not 
trusted 
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M2- Weak Server Side Controls 

OWASP Top 10 

 

 

 

 

 
 

• https://www.owasp.org/index.php/Category:O
WASP_Top_Ten_Project 

 

OWASP Cloud Top 10 

 

 

 

 

 
 

• https://www.owasp.org/images/4/47/Cloud-
Top10-Security-Risks.pdf 

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
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M2- Weak Server Side Controls 
Prevention Tips 

• Understand the additional risks 
mobile apps introduce into existing 
architectures 

• Leverage the wealth of knowledge 
that is already out there 

• OWASP Web Top 10, Cloud Top 
10, Web Services Top 10 

• Cheat sheets, development guides, 
ESAPI 

 

Control
# 

Description 

5.1-5.8 Keep the backend APIs 
(services) and the platform 
(server) secure 
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M3- Insufficient Transport Layer Protection 

• Complete lack of encryption for 
transmitted data 

• Yes, this unfortunately happens often 

• Weakly encrypted data in transit 

• Strong encryption, but ignoring 
security warnings 

• Ignoring certificate validation errors 

• Falling back to plain text after failures 

 

 

Impact 

• Man-in-the-
middle attacks 

• Tampering w/ 
data in transit 

• Confidentiality 
of data lost 
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M3- Insufficient Transport Layer Protection 

Real World Example: Google ClientLogin 
Authentication Protocol 

• Authorization header sent over HTTP 

• When users connected via wifi, apps 
automatically sent the token in an attempt 
to automatically synchronize data from 
server 

• Sniff this value, impersonate the user 
• http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html 

 

http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html
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M3- Insufficient Transport Layer Protection 
Prevention Tips 

• Ensure that all sensitive data 
leaving the device is 
encrypted 

• This includes data over carrier 
networks, WiFi, and even NFC 

• When security exceptions are 
thrown, it’s generally for a 
reason…DO NOT ignore them! 

 

Control
# 

Description 

3.1.3.6 Ensure sensitive data is 
protected in transit 
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M4- Client Side Injection 

• Apps using browser libraries 

• Pure web apps 

• Hybrid web/native apps 

• Some familiar faces 

• XSS and HTML Injection 

• SQL Injection 

• New and exciting twists 

• Abusing phone dialer + SMS 

• Abusing in-app payments 

 

Impact 

• Device 
compromise 

• Toll fraud 

• Privilege 
escalation 
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M4- Client Side Injection 

Garden Variety XSS…. With access to: 
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M4- Client Side Injection 
Prevention Tips 

• Sanitize or escape untrusted data 
before rendering or executing it 

• Use prepared statements for 
database calls…concatenation is 
still bad, and always will be bad 

• Minimize the sensitive native 
capabilities tied to hybrid web 
functionality 

 

 

Control
# 

Description 

6.3 Pay particular attention to 
validating all data received 
from and sent to non-
trusted third party apps 
before processing 

10.1-
10.5 

Carefully check any runtime 
interpretation of code for 
errors 
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M5- Poor Authorization and Authentication 

• Part mobile, part architecture 

• Some apps rely solely on 
immutable, potentially 
compromised values (IMEI, IMSI, 
UUID) 

• Hardware identifiers persist across 
data wipes and factory resets 

• Adding contextual information is 
useful, but not foolproof 

 

 

Impact 

• Privilege 
escalation 

• Unauthorized 
access 
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M5- Poor Authorization and Authentication 
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M5- Poor Authorization and Authentication 
Prevention Tips 

• Contextual info can enhance 
things, but only as part of a 
multi-factor implementation 

• Out-of-band doesn’t work 
when it’s all the same device 

• Never use device ID or 
subscriber ID as sole 
authenticator 

 

Control
# 

Description 

4.1-4.6 Implement user 
authentication/authorization 
and session management 
correctly 

8.4 Authenticate all API calls to 
paid resources 
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M6- Improper Session Handling 

• Mobile app sessions are generally 
MUCH longer 

• Why? Convenience and usability 

• Apps maintain sessions via 

• HTTP cookies 

• OAuth tokens 

• SSO authentication services 

• Bad idea= using a device identifier 
as a session token 

 

Impact 

• Privilege 
escalation 

• Unauthorized 
access 

• Circumvent 
licensing and 
payments 

 



28 

M6- Improper Session Handling 
Prevention Tips 

• Don’t be afraid to make users 
re-authenticate every so often 

• Ensure that tokens can be 
revoked quickly in the event 
of a lost/stolen device 

• Utilize high entropy, tested 
token generation resources 

 

 

Control
# 

Description 

1.13 Use non-persistent 
identifiers  

4.1-4.6 Implement user 
authentication/authorization 
and session management 
correctly 
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M7- Security Decisions Via Untrusted Inputs 

• Can be leveraged to bypass 
permissions and security models 

• Similar but different depending on 
platform 

• iOS- Abusing URL Schemes 

• Android- Abusing Intents 

• Several attack vectors 

• Malicious apps 

• Client side injection 

 

Impact 

• Consuming 
paid resources 

• Data 
exfiltration 

• Privilege 
escalation 
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M7- Security Decisions Via Untrusted Inputs 

Skype iOS URL Scheme Handling Issue 

 

 

 
 

 

 

 

• http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/ 

http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
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M7- Security Decisions Via Untrusted Inputs 
Prevention Tips 

• Check caller’s permissions at 
input boundaries 

• Prompt the user for additional 
authorization before allowing 

• Where permission checks 
cannot be performed, ensure 
additional steps required to 
launch sensitive actions 

 

Control
# 

Description 

10.2 Run interpreters at minimal 
privilege levels 
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M8- Side Channel Data Leakage 

• Mix of not disabling platform features and 
programmatic flaws 

• Sensitive data ends up in unintended places 

• Web caches 

• Keystroke logging 

• Screenshots (ie- iOS backgrounding) 

• Logs (system, crash) 

• Temp directories 

• Understand what 3rd party libraries in your 
apps are doing with user data                
(ie- ad networks, analytics) 

 

Impact 

• Data retained 
indefinitely 

• Privacy 
violations 
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M8- Side Channel Data Leakage 

Logging 

 

 

Screenshots 
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M8- Side Channel Data Leakage 
Prevention Tips 

• Never log credentials, PII, or other sensitive data to 
system logs 

• Remove sensitive data before screenshots are taken, 
disable keystroke logging per field, and utilize anti-
caching directives for web content 

• Debug your apps before releasing them to observe 
files created, written to, or modified in any way 

• Carefully review any third party libraries you 
introduce and the data they consume 

• Test your applications across as many platform 
versions as possible 

 

Control
# 

Description 

7.3 Check whether you are 
collecting PII, it may not 
always be obvious 

7.4 Audit communication 
mechanisms to check for 
unintended leaks (e.g. 
image metadata) 
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M9- Broken Cryptography 

• Two primary categories 

• Broken implementations using strong 
crypto libraries 

• Custom, easily defeated crypto 
implementations 

• Encoding != encryption 

• Obfuscation != encryption 

• Serialization != encryption 

Impact 

• Confidentiality 
of data lost 

• Privilege 
escalation 

• Circumvent 
business logic 
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M9- Broken Cryptography 
 

ldc literal_876:"QlVtT0JoVmY2N2E=” 

invokestatic byte[] decode( java.lang.String ) 

invokespecial_lib java.lang.String.<init> // pc=2 

astore 8 

 

private final byte[] 

com.picuploader.BizProcess.SendRequest.routine_12998    

    (com.picuploader.BizProcess.SendRequest, byte[], byte[] ); 

 { 

   enter 

   new_lib net.rim.device.api.crypto.TripleDESKey 
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M9- Broken Cryptography 
Prevention Tips 

• Storing the key with the 
encrypted data negates 
everything 

• Leverage battle-tested crypto 
libraries vice writing your own 

• Take advantage of what your 
platform already provides! 

 

Control
# 

Description 

1.3 Utilize file encryption API’s 

2.3 Leverage secure containers 
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M10- Sensitive Information Disclosure 

• We differentiate by stored (M1) vs. 
embedded/hardcoded (M10) 

• Apps can be reverse engineered 
with relative ease 

• Code obfuscation raises the bar, but 
doesn’t eliminate the risk 

• Commonly found “treasures”: 

• API keys 

• Passwords 

• Sensitive business logic 

 

Impact 

• Credentials 
disclosed 

• Intellectual 
property 
exposed 
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M10- Sensitive Information Disclosure 



40 

M10- Sensitive Information Disclosure 
Prevention Tips 

• Private API keys are called that 
for a reason…keep them off of 
the client 

• Keep proprietary and sensitive 
business logic on the server 

• Almost never a legitimate reason 
to hardcode a password (if there 
is, you have other problems) 

Control
# 

Description 

2.10 Do not store any passwords 
or secrets in the application 
binary 



Wrap Up 
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Going Forward 

• 60 day review period open to the public 

• RC1 then becomes ‘Final v1.0’ 

• 12 month revision cycle 

• Rapidly evolving platforms 

• Stale data = not as useful 

• If you have suggestions or ideas, we 
want them! 
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Conclusion 

• This is a good start, but we have a long 
way to go 

• We’ve identified the issues…now we 
have to fix them 

• Platforms must mature, frameworks 
must mature, apps must mature 

• The OWASP Mobile body of knowledge 
must grow 
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Q&A 

Thanks for listening! 

 

• Jack Mannino jack@nvisiumsecurity.com 
http://twitter.com/jack_mannino 

• Zach Lanier zach.lanier@intrepidusgroup.com             
http://twitter.com/quine 

• Mike Zusman mike.zusman@carvesystems.com           
http://twitter.com/schmoilito 

 

 

 

mailto:jack@nvisiumsecurity.com
http://twitter.com/jack_mannino
mailto:zach.lanier@intrepidusgroup.com
http://twitter.com/quine
mailto:mike.zusman@carvesystems.com
http://twitter.com/schmoilito

