
© 2006 Carnegie Mellon University

Secure Coding in C and C++
Integral Security
Robert C. Seacord
FIRST Conference : June 26, 2006

© 2006 Carnegie Mellon University 2

About this Presentation
Derived from the Addison-Wesley book
“Secure Coding in C and C++”

Presentation assumes basic C/C++
programming skills but does not assume in-
depth knowledge of software security

Ideas generalize but examples are specific to
Microsoft Visual Studio
Linux/GCC
32-bit Intel Architecture (IA-32)

© 2006 Carnegie Mellon University 3

An Integer Story 1
GNU’s Bourne Again Shell (bash) is a drop-in
replacement for the Bourne shell (/bin/sh).

same syntax as the standard shell but provides
additional functionality such as job control,
command-line editing, and history.
most prevalent use is on Linux.

A vulnerability exists in bash versions 1.14.6
and earlier where bash can be tricked into
executing arbitrary commands.

© 2006 Carnegie Mellon University 4

An Integer Story 2
Bash contains an incorrectly declared variable in the
yy_string_get() function responsible for parsing
the user-provided command line into separate tokens.

The error involves the variable string, which has
been declared to be of type char *.

The string variable is used to traverse the character
string containing the command line to be parsed.

© 2006 Carnegie Mellon University 5

An Integer Story 3
As characters are retrieved from this pointer,
they are stored in a variable of type int.

For compilers in which the char type defaults
to signed char, this value is sign-extended
when assigned to the int variable.

For character code 255 decimal (-1 in two’s
complement form), this sign extension results
in the value -1 being assigned to the integer.

-1 is used in other parts of the parser to
indicate the end of a command.

© 2006 Carnegie Mellon University 6

An Integer Story 4
The character code 255 decimal (377 octal)
serves as an unintended command separator
for commands given to bash via the -c option.

Example:
bash -c 'ls\377who'

(where \377 represents the single character
with value 255 decimal) executes two
commands, ls and who.

© 2006 Carnegie Mellon University 7

Integer Security

Integers represent a growing and
underestimated source of vulnerabilities in C
and C++ programs.

Integer range checking has not been
systematically applied in the development of
most C and C++ software.
security flaws involving integers exist
a portion of these are likely to be vulnerabilities

© 2006 Carnegie Mellon University 8

Unexpected Integer Values

Unexpected value are a common source of software
vulnerabilities (even when this behavior is correct).

An unexpected value is a
value other than the one
you would expect to get
using a pencil and paper

© 2006 Carnegie Mellon University 9

Integer Agenda
Integers

Vulnerabilities

Mitigation Strategies

Notable Vulnerabilities

Summary

© 2006 Carnegie Mellon University 10

Integer Section Agenda

Representation

Types

Conversions

Error conditions

Operations

© 2006 Carnegie Mellon University 11

Integer Representation
Signed magnitude

One’s complement

Two’s complement

These integer representations vary in how they
represent negative numbers.

© 2006 Carnegie Mellon University 12

Signed-Magnitude Representation

Uses the high-order bit to indicate the sign
0 for positive
1 for negative
remaining low-order bits indicate the magnitude
of the value

Signed-magnitude representation of +41 and -41

0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1

32 + 8 + 1

41+

32 + 8 + 1

41-

© 2006 Carnegie Mellon University 13

One’s Complement
One’s complement replaced signed magnitude

because the circuitry was too complicated.

Negative numbers are represented in one’s
complement form by complementing each bit

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 0

each 1 is
replaced
with a 0

each 0 is
replaced
with a 1

even the
sign bit is
reversed

© 2006 Carnegie Mellon University 14

Two’s Complement
The two’s complement form of a negative integer is created by

adding one to the one’s complement representation.

Two’s complement representation has a single (positive) value for
zero.

The sign is represented by the most significant bit.

The notation for positive integers is identical to their signed-
magnitude representations.

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 0

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 1+ 1 =

© 2006 Carnegie Mellon University 15

Representation

Types

Conversions

Error conditions

Operations

Integer Section Agenda

© 2006 Carnegie Mellon University 16

Signed and Unsigned Types
Integers in C and C++ are either signed or
unsigned.

For each signed type there is an equivalent
unsigned type.

© 2006 Carnegie Mellon University 17

Signed Integers
Signed integers are used to represent positive
and negative values.

On a computer using two’s complement
arithmetic, a signed integer ranges from -2n-1

through 2n-1-1.

© 2006 Carnegie Mellon University 18

Signed Integer Representation

© 2006 Carnegie Mellon University 19

Unsigned Integers
Unsigned integer values range from zero to a

maximum that depends on the size of the
type

This maximum value can be calculated as
2n-1, where n is the number of bits used to
represent the unsigned type.

© 2006 Carnegie Mellon University 20

Unsigned Integer Representation

two’s complement

© 2006 Carnegie Mellon University 21

Standard Integer Types
Standard integers include the following types,

in non-decreasing length order:
signed char
short int
int
long int
long long int

© 2006 Carnegie Mellon University 22

Other C99 Integer Types
The following types are used for special

purposes
ptrdiff_t is the signed integer type of the
result of subtracting two pointer
size_t is the unsigned result of the sizeof
operator
wchar_t is an integer type whose range of
values can represent distinct codes for all
members of the largest extended character set
specified among the supported locales.

© 2006 Carnegie Mellon University 23

Platform-Specific Integer Types
Vendors often define platform-specific integer types.

The Microsoft Windows API defines a large number of
integer types:
__int8, __int16, __int32, __int64
ATOM
BOOLEAN, BOOL
BYTE
CHAR
DWORD, DWORDLONG, DWORD32, DWORD64
WORD
INT, INT32, INT64
LONG, LONGLONG, LONG32, LONG64
Etc.

© 2006 Carnegie Mellon University 24

Integer Ranges
Minimum and maximum values for an integer
type depend on

the type’s representation
signedness
the number of allocated bits

The C99 standard sets minimum requirements
for these ranges.

© 2006 Carnegie Mellon University 25

Example Integer Ranges
signed char

0 127-128

0 255

unsigned char

0 32767

short

- 32768

0 65535

unsigned short

signed char

00 127127-128-128

00 255255

unsigned char

00 3276732767

short

- 32768- 32768

00 65535 65535

unsigned short

© 2006 Carnegie Mellon University 26

Integer Section Agenda

Representation

Types

Conversions

Error conditions

Operations

© 2006 Carnegie Mellon University 27

Integer Conversions
Type conversions occur explicitly in C and C++ as the

result of a cast or implicitly as required by an
operation.

Conversions can lead to lost or misinterpreted data.

Implicit conversions are a consequence of the C
language ability to perform operations on mixed
types.

C99 rules define how C compilers handle
conversions:
integer promotions
integer conversion rank
usual arithmetic conversions

© 2006 Carnegie Mellon University 28

Integer Promotions
Integer types smaller than int are promoted

when an operation is performed on them.

If all values of the original type can be
represented as an int
the value of the smaller type is converted to int
otherwise, it is converted to unsigned int

Integer promotions are applied as part of the
usual arithmetic conversions.

© 2006 Carnegie Mellon University 29

Integer Promotion Example
Integer promotions require the promotion of

each variable (c1 and c2) to int size.

char c1, c2;

c1 = c1 + c2;

The two ints are added and the sum
truncated to fit into the char type.

Integer promotions avoid arithmetic errors from
the overflow of intermediate values.

© 2006 Carnegie Mellon University 30

Implicit Conversions
1. char cresult, c1, c2, c3;

2. c1 = 100;

3. c2 = 90;

4. c3 = -120;

5. cresult = c1 + c2 + c3;

The value of c1 is added
to the value of c2.

The sum of c1 and c2 exceeds the
maximum size of signed char.

However, c1, c2, and c3 are each
converted to integers and the overall
expression is successfully evaluated.

The sum is truncated and
stored in cresult without a
loss of data.

© 2006 Carnegie Mellon University 31

Integer Conversion Rank
Every integer type has an integer conversion
rank that determines how conversions are
performed.

© 2006 Carnegie Mellon University 32

Integer Conversion Rank Rules
No two signed integer types have the same rank,
even if they have the same representation.

The rank of a signed integer type is > the rank of any
signed integer type with less precision.

The rank of long long int is > the rank of long
int, which is > the rank of int, which is > the rank of
short int, which is > the rank of signed char.

The rank of any unsigned integer type is equal to the
rank of the corresponding signed integer type.

© 2006 Carnegie Mellon University 33

Usual Arithmetic Conversions
If both operands have the same type, no conversion is needed.

If both operands are of the same integer type (signed or unsigned), the
operand with the type of lesser integer conversion rank is converted to
the type of the operand with greater rank.

If the operand that has unsigned integer type has rank >= the rank of
the type of the other operand, the operand with signed integer type is
converted to the type of the operand with unsigned integer type.

If the type of the operand with signed integer type can represent all of
the values of the type of the operand with unsigned integer type, the
operand with unsigned integer type is converted to the type of the
operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type
corresponding to the type of the operand with signed integer type.

© 2006 Carnegie Mellon University 34

Unsigned Integer Conversions 1
Conversions of smaller unsigned integer types to

larger unsigned integer types is
always safe
typically accomplished by zero-extending the value

When a larger unsigned integer is converted to a
smaller unsigned integer type, the
larger value is truncated
low-order bits are preserved

© 2006 Carnegie Mellon University 35

Unsigned Integer Conversions 2
When unsigned integer types are converted to

the corresponding signed integer type
the bit pattern is preserved so no data is lost
the high-order bit becomes the sign bit

If the sign bit is set, both the sign and
magnitude of the value change.

© 2006 Carnegie Mellon University 36

Preserve low-order wordshortlong
Preserve bit pattern; high-order bit becomes sign bitlonglong
Preserve low-order byteunsigned charlong

Preserve low-order bytecharlong
Preserve low-order byteunsigned charshort

Preserve low-order wordunsigned
short

long

Zero-extendlongshort
Preserve bit pattern; high-order bit becomes sign bitshortshort
Preserve low-order bytecharshort
Zero-extendunsigned longchar

Zero-extendunsigned
short

char
Zero-extendlongchar
Zero-extendshortchar
Preserve bit pattern; high-order bit becomes sign bitcharchar

MethodToFrom
unsigned

Misinterpreted dataLost dataKey:

© 2006 Carnegie Mellon University 37

Signed Integer Conversions 1
When a signed integer is converted to an

unsigned integer of equal or greater size and
the value of the signed integer is not
negative
the value is unchanged
the signed integer is sign-extended

A signed integer is converted to a shorter
signed integer by truncating the high-order
bits.

© 2006 Carnegie Mellon University 38

Signed Integer Conversions 2
When signed integer types are converted to

the corresponding unsigned integer type
bit pattern is preserved—no lost data
high-order bit loses its function as a sign bit

If the value of the signed integer is not
negative, the value is unchanged.

If the value is negative, the resulting unsigned
value is evaluated as a large, unsigned
integer.

© 2006 Carnegie Mellon University 39

Preserve bit pattern; high-order bit loses function as sign
bit

unsigned shortshort

Preserve low-order wordshortlong
Preserve low-order byteunsigned charlong
Preserve low-order wordunsigned shortlong

Preserve low-order bytecharlong
Sign-extend to long; convert long to unsigned longunsigned longshort

Preserve pattern; high-order bit loses function as sign bitunsigned longlong

Preserve low-order byteunsigned charshort
Sign-extendlongshort
Preserve low-order bytecharshort

Sign-extend to long; convert long to unsigned longunsigned longchar
Sign-extend to short; convert short to unsigned shortunsigned shortchar

Preserve pattern; high-order bit loses function as sign bitunsigned charchar

Sign-extendlongchar
Sign-extendshortchar

MethodToFrom

Misinterpreted dataLost dataKey:

© 2006 Carnegie Mellon University 40

Signed Integer Conversion Example
1. unsigned int l = ULONG_MAX;

2. char c = -1;

3. if (c == l) {

4. printf("-1 = 4,294,967,295?\n");

5. }

The value of c is
compared to the
value of l.

Because of integer promotions, c is
converted to an unsigned integer with a
value of 0xFFFFFFFF or 4,294,967,295.

© 2006 Carnegie Mellon University 41

Signed/Unsigned Characters
The type char can be signed or unsigned.

When a signed char with its high bit set is
saved in an integer, the result is a negative
number.

Use unsigned char for buffers, pointers,
and casts when dealing with character data
that may have values greater than 127 (0x7f).

© 2006 Carnegie Mellon University 42

Integer Section Agenda
Representation

Types

Conversions

Error conditions

Operations

© 2006 Carnegie Mellon University 43

Integer Error Conditions
Integer operations can resolve to unexpected
values as a result of an

overflow
sign error
truncation

© 2006 Carnegie Mellon University 44

Overflow
An integer overflow occurs when an integer is

increased beyond its maximum value or
decreased beyond its minimum value.

Overflows can be signed or unsigned.

A signed overflow
occurs when a value is
carried over to the sign
bit.

An unsigned overflow
occurs when the underlying
representation can no longer
represent a value.

© 2006 Carnegie Mellon University 45

Overflow Examples 1
1. int i;

2. unsigned int j;

3. i = INT_MAX; // 2,147,483,647

4. i++;

5. printf("i = %d\n", i);

6. j = UINT_MAX; // 4,294,967,295;

7. j++;

8. printf("j = %u\n", j);

i=-2,147,483,648

j = 0

© 2006 Carnegie Mellon University 46

Overflow Examples 2
9. i = INT_MIN; // -2,147,483,648;

10. i--;

11. printf("i = %d\n", i);

12. j = 0;

13. j--;

14. printf("j = %u\n", j);

i = 2,147,483,647

j = 4,294,967,295

© 2006 Carnegie Mellon University 47

Truncation Errors
Truncation errors occur when

an integer is converted to a smaller integer
type and
the value of the original integer is outside the
range of the smaller type

Low-order bits of the original value are
preserved and the high-order bits are lost.

© 2006 Carnegie Mellon University 48

Truncation Error Example
1. char cresult, c1, c2, c3;

2. c1 = 100;

3. c2 = 90;

4. cresult = c1 + c2;

Integers smaller than int
are promoted to int or
unsigned int before being
operated on

Adding c1 and c2 exceeds the max
size of signed char (+127)

Truncation occurs when the
value is assigned to a type
that is too small to represent
the resulting value

© 2006 Carnegie Mellon University 49

Sign Errors
Can occur when

converting an unsigned integer to a signed
integer
converting a signed integer to an unsigned
integer

© 2006 Carnegie Mellon University 50

Converting to Signed Integer
Converting an unsigned integer to a signed

integer of
equal size - preserve bit pattern; high-order bit
becomes sign bit
greater size - the value is zero-extended then
converted
lesser size - preserve low-order bits

If the high-order bit of the unsigned integer is
not set - the value is unchanged
set - results in a negative value

© 2006 Carnegie Mellon University 51

Converting to Unsigned Integer
Converting a signed integer to an unsigned

integer of
equal size - bit pattern of the original integer is
preserved
greater size - the value is sign-extended then
converted
lesser size - preserve low-order bits

If the value of the signed integer is
not negative - the value is unchanged
negative - a (typically large) positive value

© 2006 Carnegie Mellon University 52

Sign Error Example
1. int i = -3;

2. unsigned short u;

3. u = i;

4. printf("u = %hu\n", u);

There are sufficient bits to represent the value so
no truncation occurs. The two’s complement
representation is interpreted as a large signed
value, however, so u = 65533.

Implicit conversion to smaller
unsigned integer

© 2006 Carnegie Mellon University 53

Representation

Types

Conversions

Error conditions

Operations

Integer Section Agenda

© 2006 Carnegie Mellon University 54

Integer Operations
Integer operations can result in errors and
unexpected values.

Unexpected integer values can cause
unexpected program behavior
security vulnerabilities

Most integer operations can result in
exceptional conditions.

© 2006 Carnegie Mellon University 55

Integer Addition
Addition can be used to add two arithmetic
operands or a pointer and an integer.

If both operands are of arithmetic type, the
usual arithmetic conversions are performed on
them.

Integer addition can result in an overflow if the
sum cannot be represented in the allocated
bits.

© 2006 Carnegie Mellon University 56

Add Instruction
IA-32 instruction set includes an add instruction that
takes the form

add destination, source

Adds the 1st (destination) op to the 2nd (source) op
Stores the result in the destination operand
Destination operand can be a register or memory
location
Source operand can be an immediate, register, or
memory location

Signed and unsigned overflow conditions are detected
and reported.

© 2006 Carnegie Mellon University 57

Add Instruction Example
The instruction

add eax, ebx
adds the 32-bit ebx register to the 32-bit eax register
leaves the sum in the eax register

The add instruction sets flags in the flags register
overflow flag indicates signed arithmetic overflow
carry flag indicates unsigned arithmetic overflow

© 2006 Carnegie Mellon University 58

Layout of the Flags Register
15 0

Overflow

Direction

Interrupt

Sign
Zero

Auxiliary Carry

Parity

Carry

© 2006 Carnegie Mellon University 59

Interpreting Flags
There are no distinctions between the addition
of signed and unsigned integers at the
machine level.

Overflow and carry flags must be interpreted in
context.

© 2006 Carnegie Mellon University 60

Adding signed and unsigned int

Both signed int and unsigned int
values are added as follows:

si1 + si2

7. mov eax, dword ptr [ui1]

8. add eax, dword ptr [ui2]

© 2006 Carnegie Mellon University 61

Adding signed long long int

sll1 + sll2

9. mov eax, dword ptr [sll1]

10. add eax, dword ptr [sll2]

11. mov ecx, dword ptr [ebp-98h]

12. adc ecx, dword ptr [ebp-0A8h]

The add instruction adds
the low-order 32 bits

The adc instruction adds the high-order
32 bits and the value of the carry bit

© 2006 Carnegie Mellon University 62

Unsigned Overflow Detection
The carry flag denotes an unsigned arithmetic
overflow.

Unsigned overflows can be detected using the
jc instruction (jump if carry)
jnc instruction (jump if not carry)

Conditional jump instructions are placed after
the

add instruction in the 32-bit case
adc instruction in the 64-bit case

© 2006 Carnegie Mellon University 63

Signed Overflow Detection
The overflow flag denotes a signed arithmetic
overflow.

Signed overflows can be detected using the
jo instruction (jump if overflow)
jno instruction (jump if not overflow)

Conditional jump instructions are placed after
the

add instruction in the 32-bit case
adc instruction in the 64-bit case

© 2006 Carnegie Mellon University 64

Integer Subtraction
The IA-32 instruction set includes

sub (subtract)
sbb (subtract with borrow)

The sub and sbb instructions set the overflow and
carry flags to indicate an overflow in the signed or
unsigned result.

© 2006 Carnegie Mellon University 65

Integer Multiplication
Multiplication is prone to overflow errors
because relatively small operands can
overflow.

One solution is to allocate storage for the
product that is twice the size of the larger of
the two operands.

© 2006 Carnegie Mellon University 66

Signed/Unsigned Examples
The max value for an unsigned integer is 2n-1

2n-1 x 2n-1 = 22n – 2n+1 + 1 < 22n

The minimum value for a signed integer is -2n-1

-2n-1 x -2n-1 = 22n-2 < 22n

© 2006 Carnegie Mellon University 67

Multiplication Instructions
The IA-32 instruction set includes a

mul (unsigned multiply) instruction
imul (signed multiply) instruction

The mul instruction
performs an unsigned multiplication of the 1st

(destination) operand and the 2nd (source)
operand
stores the result in the destination operand

© 2006 Carnegie Mellon University 68

Unsigned Multiplication
1. if (OperandSize == 8) {

2. AX = AL * SRC;

3. else {

4. if (OperandSize == 16) {

5. DX:AX = AX * SRC;

6. }

7. else { // OperandSize == 32

8. EDX:EAX = EAX * SRC;

9. }

10. }

Product of 8-bit operands
is stored in 16-bit
destination registers

Product of 16-bit operands
is stored in 32-bit
destination registers

Product of 32-bit operands is stored in 64-bit
destination registers

© 2006 Carnegie Mellon University 69

Signed/Unsigned int Multiplication

si_product = si1 * si2;

ui_product = ui1 * ui2;

9. mov eax, dword ptr [ui1]

10. imul eax, dword ptr [ui2]

11. mov dword ptr [ui_product], eax

© 2006 Carnegie Mellon University 70

Upcasting
Cast both operands to an integer with at least
2x bits and then multiply.

For unsigned integers
Check high-order bits in the next larger integer.
If any are set, throw an error.

For signed integers, all zeros or all ones in the
high-order bits and the sign bit in the low-order
bit indicate no overflow.

© 2006 Carnegie Mellon University 71

Upcast Example
void* AllocBlocks(size_t cBlocks) {

// allocating no blocks is an error
if (cBlocks == 0) return NULL;

// Allocate enough memory
// Upcast the result to a 64-bit integer
// and check against 32-bit UINT_MAX
// to make sure there's no overflow

unsigned long long alloc = cBlocks * 16;
return (alloc < UINT_MAX)

? malloc(cBlocks * 16)
: NULL;

}
Multiplication results in a 32-bit value. The result is
assigned to an unsigned long long but the
calculation may have already overflowed.

© 2006 Carnegie Mellon University 72

Standard Compliance
To be compliant with C99, multiplying two
32-bit numbers in this context must yield a
32-bit result.

The language was not modified because the
result would be burdensome on architectures
that do not have widening multiply instructions.

The correct result could be achieved by casting
one of the operands.

© 2006 Carnegie Mellon University 73

Corrected Upcast Example
void* AllocBlocks(size_t cBlocks) {

// allocating no blocks is an error
if (cBlocks == 0) return NULL;

// Allocate enough memory
// Upcast the result to a 64-bit integer
// and check against 32-bit UINT_MAX
// to make sure there's no overflow

unsigned long long alloc =
(unsigned long long)cBlocks*16;

return (alloc < UINT_MAX)

? malloc(cBlocks * 16)
: NULL;

}

© 2006 Carnegie Mellon University 74

Integer Division
An integer overflow condition occurs when the
minimum integer value for 32-bit or 64-bit
integers is divided by -1.

In the 32-bit case, –2,147,483,648/-1 should
be equal to 2,147,483,648.

Because 2,147,483,648 cannot be represented
as a signed 32-bit integer, the resulting value
is incorrect.

- 2,147,483,648 /-1 = - 2,147,483,648

© 2006 Carnegie Mellon University 75

Error Detection
The IA-32 instruction set includes the div and
idiv instructions.

The div instruction
divides the (unsigned) integer value in the ax,
dx:ax, or edx:eax registers (dividend) by the
source operand (divisor)
stores the result in the ax (ah:al), dx:ax, or
edx:eax registers

The idiv instruction performs the same
operations on (signed) values.

© 2006 Carnegie Mellon University 76

Signed Integer Division
si_quotient = si_dividend / si_divisor;

1. mov eax, dword ptr [si_dividend]

2. cdq

3. idiv eax, dword ptr [si_divisor]

4. mov dword ptr [si_quotient], eax

NOTE: Assembly code generated by Visual C++

The cdq instruction copies the sign (bit 31) of the value in the eax
register into every bit position in the edx register.

© 2006 Carnegie Mellon University 77

Unsigned Integer Division
ui_quotient = ui1_dividend / ui_divisor;

5. mov eax, dword ptr [ui_dividend]

6. xor edx, edx

7. div eax, dword ptr [ui_divisor]

8. mov dword ptr [ui_quotient], eax

NOTE: Assembly code generated by Visual C++

© 2006 Carnegie Mellon University 78

Error Detection
The Intel division instructions div and idiv do not
set the overflow flag.

A division error is generated if
the source operand (divisor) is zero
the quotient is too large for the designated register

A divide error results in a fault on interrupt vector 0.

When a fault is reported, the processor restores the
machine state to the state before the beginning of
execution of the faulting instruction.

© 2006 Carnegie Mellon University 79

Microsoft Visual Studio
C++ exception handling does not allow recovery from

a hardware exception
a fault such as
– an access violation
– divide by zero

Visual Studio provides
structured exception handling (SEH) facility for dealing
with hardware and other exceptions
extensions to the C language that enable C programs to
handle Win32 structured exceptions

Structured exception handling is an operating system
facility that is distinct from C++ exception handling.

© 2006 Carnegie Mellon University 80

Structured Exception Handling in C
int x, y;

__try {

x = INT_MIN;

y = -1;

x = x / y;

}

__except (GetExceptionCode() ==

EXCEPTION_INT_OVERFLOW ?

EXCEPTION_EXECUTE_HANDLER :

EXCEPTION_CONTINUE_SEARCH) {

printf("Integer overflow during division.\n");

}

© 2006 Carnegie Mellon University 81

C++ Exception Handling
1. Sint operator /(unsigned int divisor) {

2. try {

3. return ui / divisor;

4. }

5. catch (...) {

6. throw SintException(

ARITHMETIC_OVERFLOW

);

7. }

8. }

C++ exceptions in Visual C++ are implemented
using structured exceptions, making it possible to
use C++ exception handling on this platform.

© 2006 Carnegie Mellon University 82

Linux Error Handling 1
In the Linux environment, hardware exceptions such
as division errors are managed using signals.

If the source operand (divisor) is zero or if the quotient
is too large for the designated register, a SIGFPE
(floating point exception) is generated.

To prevent abnormal termination of the program, a
signal handler can be installed.

signal(SIGFPE, Sint::divide_error);

© 2006 Carnegie Mellon University 83

Linux Error Handling 2
The signal() call accepts two parameters:

signal number
address of signal handler

Because the return address points to the
faulting instruction, if the signal handler simply
returns, the instruction and the signal handler
will be alternately called in an infinite loop.

To solve this problem, the signal handler
throws a C++ exception that can then be
caught by the calling function.

© 2006 Carnegie Mellon University 84

Signal Handler
1. static void divide_error(int val) {

2. throw

SintException(ARITHMETIC_OVERFLOW);

3. }

© 2006 Carnegie Mellon University 85

Agenda
Integers

Vulnerabilities

Mitigation Strategies

Notable Vulnerabilities

Summary

© 2006 Carnegie Mellon University 86

Vulnerabilities
A vulnerability is a set of conditions that allows
violation of an explicit or implicit security policy.

Security flaws can result from hardware-level integer
error conditions or from faulty logic involving integers.

These security flaws can, when combined with other
conditions, contribute to a vulnerability.

© 2006 Carnegie Mellon University 87

Vulnerabilities Section Agenda

Integer overflow

Sign error

Truncation

Non-exceptional

Integer overflow

Sign error

Truncation

Non-exceptional

© 2006 Carnegie Mellon University 88

JPEG Example
Based on a real-world vulnerability in the handling of
the comment field in JPEG files.

Comment field includes a two-byte length field
indicating the length of the comment, including the
two-byte length field.

To determine the length of the comment string (for
memory allocation), the function reads the value in the
length field and subtracts two.

The function then allocates the length of the comment
plus one byte for the terminating null byte.

© 2006 Carnegie Mellon University 89

Integer Overflow Example
1. void getComment(unsigned int len, char *src) {

2. unsigned int size;

3. size = len - 2;

4. char *comment = (char *)malloc(size + 1);

5. memcpy(comment, src, size);

6. return;

7. }

8. int _tmain(int argc, _TCHAR* argv[]) {

9. getComment(1, "Comment ");

10. return 0;

11. }

Size is interpreted as a large
positive value of 0xffffffff

0 byte malloc() succeeds

Possible to cause an overflow by creating
an image with a comment length field of 1

© 2006 Carnegie Mellon University 90

Memory Allocation Example
Integer overflow can occur in calloc() and other
memory allocation functions when computing the size
of a memory region.

A buffer smaller than the requested size is returned,
possibly resulting in a subsequent buffer overflow.

The following code fragments may lead to
vulnerabilities:

C: p = calloc(sizeof(element_t), count);
C++: p = new ElementType[count];

© 2006 Carnegie Mellon University 91

Memory Allocation
The calloc() library call accepts two
arguments:

the storage size of the element type
the number of elements

The element type size is not specified explicitly
in the case of the new operator in C++.

To compute the size of the memory required,
the storage size is multiplied by the number of
elements.

© 2006 Carnegie Mellon University 92

Overflow Condition
If the result cannot be represented in a signed
integer, the allocation routine can appear to
succeed but allocate an area that is too small.

The application can write beyond the end of
the allocated buffer, resulting in a heap-based
buffer overflow.

© 2006 Carnegie Mellon University 93

Vulnerabilities Section Agenda

Integer overflow

Sign error

Truncation

Non-exceptional

Integer overflow

Sign error

Truncation

Non-exceptional

© 2006 Carnegie Mellon University 94

Sign Error Example 1
1. #define BUFF_SIZE 10

2. int main(int argc, char* argv[]){

3. int len;

4. char buf[BUFF_SIZE];

5. len = atoi(argv[1]);

6. if (len < BUFF_SIZE){

7. memcpy(buf, argv[2], len);

8. }

9. }

Program accepts two
arguments (the length
of data to copy and
the actual data)

len declared as a signed integer

argv[1] can be
a negative value

A negative
value
bypasses
the check

Value is interpreted as an
unsigned value of type size_t

© 2006 Carnegie Mellon University 95

Sign Errors Example 2
The negative length is interpreted as a large,
positive integer with the resulting buffer
overflow.

This vulnerability can be prevented by
restricting the integer len to a valid value.

more effective range check that guarantees
len is greater than 0 but less than BUFF_SIZE
declare as an unsigned integer
– eliminates the conversion from a signed to

unsigned type in the call to memcpy()
– prevents the sign error from occurring

© 2006 Carnegie Mellon University 96

Vulnerabilities Section Agenda

Integer overflow

Sign error

Truncation

Non-exceptional

Integer overflow

Sign error

Truncation

Non-exceptional

© 2006 Carnegie Mellon University 97

Vulnerable Implementation
1. bool func(char *name, long cbBuf) {

2. unsigned short bufSize = cbBuf;

3. char *buf = (char *)malloc(bufSize);

4. if (buf) {

5. memcpy(buf, name, cbBuf);

6. return true;

7. }

8. return false;

9. }

cbBuf is used to initialize
bufSize, which is used
to allocate memory for
buf

cbBuf is declared as a long and
used as the size in the memcpy()
operation

© 2006 Carnegie Mellon University 98

Vulnerability 1
cbBuf is temporarily stored in the unsigned short
bufSize.

The maximum size of an unsigned short for both
GCC and the Visual C++ compiler on IA-32 is 65,535.

The maximum value for a signed long on the same
platform is 2,147,483,647.

A truncation error will occur on line 2 for any values of
cbBuf between 65,535 and 2,147,483,647.

© 2006 Carnegie Mellon University 99

Vulnerability 2

This would only be an error and not a
vulnerability if bufSize were used for both the
calls to malloc() and memcpy().

Because bufSize is used to allocate the size
of the buffer and cbBuf is used as the size on
the call to memcpy(), it is possible to overflow
buf by anywhere from 1 to 2,147,418,112
(2,147,483,647 - 65,535) bytes.

© 2006 Carnegie Mellon University 100

Vulnerabilities Section Agenda

Integer overflow

Sign error

Truncation

Non-exceptional

Integer overflow

Sign error

Truncation

Non-exceptional

© 2006 Carnegie Mellon University 101

Non-Exceptional Integer Errors

Integer-related errors can occur without an
exceptional condition (such as an overflow)
occurring.

© 2006 Carnegie Mellon University 102

Negative Indices
1. int *table = NULL;

2. int insert_in_table(int pos, int value){

3. if (!table) {

4. table = (int *)malloc(sizeof(int) * 100);

5. }

6. if (pos > 99) {

7. return -1;

8. }

9. table[pos] = value;

10. return 0;

11. }

Storage for the
array is
allocated on
the heap

pos is not > 99

value is inserted into the
array at the specified position

© 2006 Carnegie Mellon University 103

Vulnerability

There is a vulnerability resulting from incorrect
range checking of pos.

Because pos is declared as a signed integer,
both positive and negative values can be
passed to the function.
An out-of-range positive value would be caught
but a negative value would not.

© 2006 Carnegie Mellon University 104

Agenda
Integers

Vulnerabilities

Mitigation Strategies

Notable Vulnerabilities

Summary

© 2006 Carnegie Mellon University 105

Mitigation Section Agenda

Type range checking

Strong typing

Compiler checks

Safe integer operations

Testing and reviews

© 2006 Carnegie Mellon University 106

Type Range Checking
Type range checking can eliminate integer
vulnerabilities.

Languages such as Pascal and Ada allow range
restrictions to be applied to any scalar type to form
subtypes.

Ada allows range restrictions to be declared on
derived types using the range keyword:

type day is new INTEGER range 1..31;

Range restrictions are enforced by the language
runtime.

C and C++ are not nearly as good at enforcing type
safety.

© 2006 Carnegie Mellon University 107

Type Range Checking Example
1. #define BUFF_SIZE 10

2. int main(int argc, char* argv[]){

3. unsigned int len;

4. char buf[BUFF_SIZE];

5. len = atoi(argv[1]);

6. if ((0<len) && (len<BUFF_SIZE)){

7. memcpy(buf, argv[2], len);

8. }

9. else

10. printf("Too much data\n");

11. }

.

Implicit type check from
the declaration as an
unsigned integer

Explicit check for both upper and lower bounds

© 2006 Carnegie Mellon University 108

Range Checking Explained
Declaring len to be an unsigned integer is
insufficient for range restriction because it only
restricts the range from 0..MAX_INT.

Checking upper and lower bounds ensures no
out-of-range values are passed to memcpy().

Using both the implicit and explicit checks may
be redundant but is recommended as “healthy
paranoia.”

© 2006 Carnegie Mellon University 109

Range Checking
External inputs should be evaluated to determine
whether there are identifiable upper and lower
bounds.

These limits should be enforced by the interface.
It’s easier to find and correct input problems than it is
to trace internal errors back to faulty inputs.

Limit input of excessively large or small integers.

Typographic conventions can be used in code to
distinguish constants from variables
distinguish externally influenced variables from locally
used variables with well-defined ranges

© 2006 Carnegie Mellon University 110

Mitigation Section Agenda

Type range checking

Strong typing

Compiler checks

Safe integer operations

Testing and reviews

© 2006 Carnegie Mellon University 111

Strong Typing
One way to provide better type checking is to
provide better types.

Using an unsigned type can guarantee that a
variable does not contain a negative value.

This solution does not prevent overflow.

Strong typing should be used so that the
compiler can be more effective in identifying
range problems.

© 2006 Carnegie Mellon University 112

Problem: Representing Object Size

Really bad:

short total = strlen(argv[1])+ 1;

Better:

size_t total = strlen(argv[1])+ 1;

Better still:

rsize_t total = strlen(argv[1])+ 1;

© 2006 Carnegie Mellon University 113

Problem with size_t
Extremely large object sizes are frequently a
sign that an object’s size was calculated
incorrectly.

As we have seen, negative numbers appear as
very large positive numbers when converted to
an unsigned type like size_t.

© 2006 Carnegie Mellon University 114

rsize_t

rsize_t cannot be greater than RSIZE_MAX.

For applications targeting machines with large
address spaces, RSIZE_MAX should be
defined as the smaller of

the size of the largest object supported
(SIZE_MAX >> 1) (even if this limit is
smaller than the size of some legitimate, but
very large, objects)

rsize_t is the same type as size_t so they
are binary compatible

© 2006 Carnegie Mellon University 115

Strong Typing Example
Declare an integer to store the temperature of water
using the Fahrenheit scale:

unsigned char waterTemperature;

waterTemperature is an unsigned 8-bit value in the
range 1-255.

unsigned char

sufficient to represent liquid water temperatures, which
range from 32 degrees Fahrenheit (freezing) to 212
degrees Fahrenheit (the boiling point)
does not prevent overflow
allows invalid values (e.g., 1-31 and 213-255)

© 2006 Carnegie Mellon University 116

Abstract Data Type
One solution is to create an abstract data type in
which waterTemperature is private and cannot be
directly accessed by the user.

A user of this data abstraction can only access,
update, or operate on this value through public
method calls.

These methods must provide type safety by ensuring
that the value of waterTemperature does not leave
the valid range.

If implemented properly, there is no possibility of an
integer type range error occurring.

© 2006 Carnegie Mellon University 117

Type range checking

Strong typing

Compiler checks

Safe integer operations

Testing and reviews

Mitigation Section Agenda

© 2006 Carnegie Mellon University 118

Visual C++ Compiler Checks
Visual C++ .NET 2003 generates a warning
(C4244) when an integer value is assigned to a
smaller integer type.

At level 1 a warning is issued if __int64 is assigned
to unsigned int.
At level 3 and 4, a “possible loss of data” warning is
issued if an integer is converted to a smaller type.

For example, the following assignment is flagged
at warning level 4:

int main() {
int b = 0, c = 0;

short a = b + c; // C4244
}

© 2006 Carnegie Mellon University 119

Visual C++ Runtime Checks
Visual C++ .NET 2003 includes runtime checks that
catch truncation errors as integers are assigned to
shorter variables that result in lost data.

The /RTCc compiler flag catches those errors and
creates a report.

Visual C++ includes a runtime_checks pragma that
disables or restores the /RTC settings but does not
include flags for catching other runtime errors such as
overflows.

Runtime error checks are not valid in a release
(optimized) build for performance reasons.

© 2006 Carnegie Mellon University 120

GCC Runtime Checks
GCC compilers provide an -ftrapv option

provides limited support for detecting integer
exceptions at runtime
generates traps for signed overflow for
addition, subtraction, and multiplication
generates calls to existing library functions

GCC runtime checks are based on post-
conditions—the operation is performed and the
results are checked for validity

© 2006 Carnegie Mellon University 121

Postcondition
For unsigned integers, if the sum is smaller than
either operand, an overflow has occurred.

For signed integers, let sum = lhs + rhs.
If lhs is non-negative and sum < rhs, an overflow
has occurred.
If lhs is negative and sum > rhs, an overflow has
occurred.
In all other cases, the addition operation succeeds.

© 2006 Carnegie Mellon University 122

Adding Signed Integers

1. Wtype __addvsi3 (Wtype a, Wtype b) {

2. const Wtype w = a + b;

3. if (b >= 0 ? w < a : w > a)

4. abort ();

5. return w;

6. } abort() is called if
• b is non-negative and w < a
• b is negative and w > a

Function from the gcc runtime system used to detect errors
resulting from the addition of signed 16-bit integers

The addition is performed
and the sum is compared to
the operands to determine if
an error occurred

© 2006 Carnegie Mellon University 123

Type range checking

Strong typing

Compiler checks

Safe integer operations

Testing and reviews

Mitigation Section Agenda

© 2006 Carnegie Mellon University 124

Safe Integer Operations 1
Integer operations can result in error conditions and
possible lost data.

The first line of defense against integer vulnerabilities
should be range checking.

explicitly
implicitly - through strong typing

It is difficult to guarantee that multiple input variables
cannot be manipulated to cause an error to occur in
some operation somewhere in a program.

© 2006 Carnegie Mellon University 125

Safe Integer Operations 2
An alternative or ancillary approach is to
protect each operation.

This approach can be labor intensive and
expensive to perform.

Use a safe integer library for all operations on
integers where one or more of the inputs could
be influenced by an untrusted source.

© 2006 Carnegie Mellon University 126

Safe Integer Solutions
C language compatible library

written by Michael Howard at Microsoft
detects integer overflow conditions using IA-32
specific mechanisms

© 2006 Carnegie Mellon University 127

Unsigned Add Function
1. int bool UAdd(size_t a, size_t b, size_t *r) {
2. __asm {
3. mov eax, dword ptr [a]
4. add eax, dword ptr [b]
5. mov ecx, dword ptr [r]
6. mov dword ptr [ecx], eax
7. jc short j1
8. mov al, 1 // 1 is success
9. jmp short j2
10. j1:
11. xor al, al // 0 is failure
12. j2:
13. };
14. }

© 2006 Carnegie Mellon University 128

Unsigned Add Function Example
1. int main(int argc, char *const *argv) {

2. unsigned int total;

3. if (UAdd(strlen(argv[1]), 1, &total) &&

UAdd(total, strlen(argv[2]), &total)) {

4. char *buff = (char *)malloc(total);

5. strcpy(buff, argv[1]);

6. strcat(buff, argv[2]);

7. else {

8. abort();

9. }

10. }

The length of the combined strings is
calculated using UAdd() with appropriate
checks for error conditions.

© 2006 Carnegie Mellon University 129

SafeInt Class
SafeInt is a C++ template class written by
David LeBlanc.

Implements a precondition approach that tests
the values of operands before performing an
operation to determine if an error will occur.

The class is declared as a template, so it can
be used with any integer type.

Every operator has been overridden except for
the subscript operator[].

© 2006 Carnegie Mellon University 130

SafeInt Example
1. int main(int argc, char *const *argv) {

2. try{

3. SafeInt<unsigned long> s1(strlen(argv[1]));

4. SafeInt<unsigned long> s2(strlen(argv[2]));

5. char *buff = (char *) malloc(s1 + s2 + 1);

6. strcpy(buff, argv[1]);

7. strcat(buff, argv[2]);

8. }

9. catch(SafeIntException err) {

10. abort();

11. }

12. }

The variables s1 and s2 are
declared as SafeInt types

When the + operator is invoked it uses the
safe version of the operator implemented as
part of the SafeInt class.

© 2006 Carnegie Mellon University 131

Addition
Addition of unsigned integers can result in an
integer overflow if the sum of the left-hand side
(LHS) and right-hand side (RHS) of an addition
operation is greater than

UINT_MAX for addition of unsigned int type
ULLONG_MAX for addition of unsigned long
long type

© 2006 Carnegie Mellon University 132

Precondition Example
Overflow occurs when A and B are unsigned
int and

A + B > UINT_MAX

To prevent the addition from overflowing the
operator+ tests that

A > UINT_MAX – B

© 2006 Carnegie Mellon University 133

Safe Integer Solutions Compared
SafeInt library has several advantages:

more portable than safe arithmetic operations
that depend on assembly language
instructions
more usable
– operators can be used inline in expressions
– SafeInt uses C++ exception handling

better performance (with optimized code)

However, SafeInt fails to provide correct
integer promotion behavior.

© 2006 Carnegie Mellon University 134

When to Use Safe Integers
Use safe integers when integer values can be
manipulated by untrusted sources such as

the size of a structure
the number of structures to allocate

void* CreateStructs(int StructSize, int HowMany) {

SafeInt<unsigned long> s(StructSize);

s *= HowMany;

return malloc(s.Value());

}

Structure size multiplied by # required to
determine size of memory to allocate

The multiplication can overflow the integer
and create a buffer overflow vulnerability

© 2006 Carnegie Mellon University 135

When Not to Use Safe Integers
Don’t use safe integers when no overflow is
possible.

tight loop
variables are not externally influenced
…

char a[INT_MAX];

for (int i = 0; i < INT_MAX; i++)

a[i] = '\0';

…

© 2006 Carnegie Mellon University 136

Type range checking

Strong typing

Compiler checks

Safe integer operations

Testing and reviews

Mitigation Section Agenda

© 2006 Carnegie Mellon University 137

Testing 1
Input validation does not guarantee that
subsequent operations on integers will not
result in an overflow or other error condition.

Testing does not provide any guarantees
either.

It is impossible to cover all ranges of possible
inputs on anything but the most trivial
programs.
If applied correctly, testing can increase
confidence that the code is secure.

© 2006 Carnegie Mellon University 138

Testing 2
Integer vulnerability tests should include boundary
conditions for all integer variables.

If type range checks are inserted in the code, test that
they function correctly for upper and lower bounds.
If boundary tests have not been included, test for
minimum and maximum integer values for the various
integer sizes used.

Use white box testing to determine the types of
integer variables.

If source code is not available, run tests with the
various maximum and minimum values for each type.

© 2006 Carnegie Mellon University 139

Source Code Audit
Source code should be audited or inspected for
possible integer range errors.

When auditing check that
integer type ranges are properly checked
input values are restricted to a valid range based on
their intended use

Integers that do not require negative values are
declared as unsigned
properly range-checked for upper and lower bounds

Operations on integers originating from untrusted
sources are performed using a safe integer library.

© 2006 Carnegie Mellon University 140

Agenda
Integers

Vulnerabilities

Mitigation Strategies

Notable Vulnerabilities

Summary

© 2006 Carnegie Mellon University 141

Notable Vulnerabilities
Integer Overflow In XDR Library

SunRPC xdr_array buffer overflow
http://xforce.iss.net/xforce/xfdb/9170

Windows DirectX MIDI Library
eEye Digital Security advisory AD20030723
http://www.eeye.com/html/Research/Advisories/AD200
30723.html

Bash
CERT Advisory CA-1996-22
http://www.cert.org/advisories/CA-1996-22.html

© 2006 Carnegie Mellon University 142

Agenda
Integers

Vulnerabilities

Mitigation Strategies

Notable Vulnerabilities

Summary

© 2006 Carnegie Mellon University 143

Summary
The key to preventing integer vulnerabilities is to
understand integer behavior in digital systems.

Concentrate on integers used as indices (or other
pointer arithmetic), lengths, sizes, and loop counters

Use safe integer operations to eliminate exception
conditions
Range check all integer values used as indices.
Use size_t or rsize_t for all sizes and lengths
(including temporary variables)

© 2006 Carnegie Mellon University 144

Questions
about
Integers

© 2006 Carnegie Mellon University 145

For More Information
Visit the CERT® web site

http://www.cert.org/secure-coding/
Contact Presenter

Robert C. Seacord rcs@cert.org
Contact CERT Coordination Center

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890

Hotline: 412-268-7090
CERT/CC personnel answer 8:00 a.m.–5:00 p.m.
and are on call for emergencies during other hours.

Fax: 412-268-6989

E-mail: cert@cert.org

© 2006 Carnegie Mellon University

Backup Slides

© 2006 Carnegie Mellon University 147

sub Instruction
Subtracts the 2nd (source) operand from the 1st

(destination) operand.

Stores the result in the destination operand.

The destination operand can be a
register
memory location

The source operand can be a(n)
immediate
register
memory location

© 2006 Carnegie Mellon University 148

sbb Instruction
The sbb instruction is executed as part of a multibyte
or multiword subtraction.

The sbb instruction adds the 2nd (source) operand
and the carry flag and subtracts the result from the 1st

(destination) operand.

The result of the subtraction is stored in the
destination operand.

The carry flag represents a borrow from a previous
subtraction.

© 2006 Carnegie Mellon University 149

signed long long int Sub

sll1 - sll2

1. mov eax, dword ptr [sll1]

2. sub eax, dword ptr [sll2]

3. mov ecx, dword ptr [ebp-0E0h]

4. sbb ecx, dword ptr [ebp-0F0h]

NOTE: Assembly code generated by Visual C++ for Windows 2000

The sub instruction subtracts
the low-order 32 bits

The sbb instruction subtracts the low-order 32 bits

© 2006 Carnegie Mellon University 150

Introductory
Example
1 int main(int argc, char *const *argv) {

2. unsigned short int total;

3. total = strlen(argv[1]) +

strlen(argv[2]) + 1;

4. char *buff = (char *) malloc(total);

5. strcpy(buff, argv[1]);

6. strcat(buff, argv[2]);

7.}

Accepts two string arguments and calculates
their combined length (plus an extra byte for
the terminating null character)

Memory is
allocated to store
both strings

The 1st argument is copied into the buffer
and the 2nd argument is concatenated to
the end of the 1st argument

© 2006 Carnegie Mellon University 151

Vulnerability
An attacker can supply arguments such that the sum
of the lengths of the strings cannot be represented by
the unsigned short int total.

The strlen() function returns a result of type
size_t, an unsigned long int on IA-32.

As a result, the sum of the lengths + 1 is an unsigned
long int.
This value must be truncated to assign to the
unsigned short int total.

If the value is truncated, malloc() allocates
insufficient memory and strcpy() and strcat()
will overflow the dynamically allocated memory.

