
IBM Research

© 2007 IBM Corporation

The broken file shredder
Programming traps and pitfalls

Wietse Venema
IBM T.J.Watson Research Center
Hawthorne, NY, USA

IBM Research

© 2007 IBM Corporation2 The broken file shredder - programming traps and pitfalls

Overview

What happens when a (UNIX) file is deleted.

Magnetic disks remember overwritten data.

How the file shredding program works.

How the file shredding program failed to work.

“Fixing” the file shredding program.

Limitations of file shredding software.

IBM Research

© 2007 IBM Corporation3 The broken file shredder - programming traps and pitfalls

UNIX file system architecture

foo 123

bar 456

and so on...

Directory /home/you

Inode 123

data block #s
type=file/dir/etc

access perms

reference count

owner/group ID

data block

data block

data block

Data blockstime stamps

file size

filename inode

IBM Research

© 2007 IBM Corporation4 The broken file shredder - programming traps and pitfalls

Deleting a UNIX file destroys structure, not content

foo 123

bar 456

and so on...

Directory /home/you

Inode 123

data block #s
type=file/dir/etc

access perms

reference count1

owner/group ID

data block

data block

data block

Data blockstime stamps2

2status change time = time of deletion
file size1zero references

foo
filename inode

IBM Research

© 2007 IBM Corporation5 The broken file shredder - programming traps and pitfalls

Persistence of deleted data

Deleted file attributes and content persist in
unallocated disk blocks.

Overwritten data persists as tiny modulations on
newer data.

Information is digital, but storage is analog.

Peter Gutmann’s papers: http://www.cryptoapps.com/~peter/usenix01.pdf

and http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

kool magnetic surface scan pix at http://www.veeco.com/

IBM Research

© 2007 IBM Corporation6 The broken file shredder - programming traps and pitfalls

IBM Research

© 2007 IBM Corporation7 The broken file shredder - programming traps and pitfalls

Avoiding data recovery with magnetic media

Erase sensitive data before deleting it.

To erase data, repeatedly reverse the direction of
magnetization. Simplistically, write 1, then 0, etc.

Data on magnetic disks is encoded to get higher
capacity and reliability (MFM, RLL, PRML, ...).
Optimal overwrite patterns depend on encoding.

mfm = modified frequency modulation; rll = run length limited;

prml = partial response maximum likelihood

IBM Research

© 2007 IBM Corporation8 The broken file shredder - programming traps and pitfalls

File shredder pseudo code

/* Generic overwriting patterns. */

patterns = (10101010, 01010101,

11001100, 00110011,

11110000, 00001111,

00000000, 11111111, random)

for each pattern

overwrite file

remove file

IBM Research

© 2007 IBM Corporation9 The broken file shredder - programming traps and pitfalls

File shredder code, paraphrased

long overwrite(char *filename)

{

FILE *fp;

long count, file_size = filesize(filename);

if ((fp = fopen(filename, “w”)) == NULL)

/* error... */

for (count = 0; count < file_size; count += BUFFER_SIZE)

fwrite(buffer, BUFFER_SIZE, 1, fp);

fclose(fp); /* XXX no error checking */

return (count);

}

IBM Research

© 2007 IBM Corporation10 The broken file shredder - programming traps and pitfalls

What can go wrong?

The program fails to overwrite the target file content
multiple times.

The program fails to overwrite the target at all.

The program overwrites something other than the
target file content.

Guess what :-).

IBM Research

© 2007 IBM Corporation11 The broken file shredder - programming traps and pitfalls

Forensic tools to access (deleted) file information

application

operating
system

hardware

regular
application

vfs
ffs, ext3fs, etc.
device driver

disk blocks

forensic
application

IBM Research

© 2007 IBM Corporation12 The broken file shredder - programming traps and pitfalls

Coroner’s Toolkit discovery
(Note: details are specific to the RedHat 6 implementation)

[root test]# ls -il shred.me list the file with its file number

1298547 -rw-rw-r-- 1 jharlan jharlan 17 Oct 10 08:25 shred.me

[root test]# icat /dev/hda5 1298547 access the file by its file number

shred this puppy

[root test]# shred shred.me overwrite and delete the file

Are you sure you want to delete shred.me? y
1000 bytes have been overwritten.

The file shred.me has been destroyed!

[root test]# icat /dev/hda5 1298547 access deleted file by its number

shred this puppy the data is still there!

[root test]#

See: http://www.securityfocus.com/archive/1/138706 and follow-ups.

IBM Research

© 2007 IBM Corporation13 The broken file shredder - programming traps and pitfalls

Delayed file system writes

shred application

operating system
VM/file cache

disk drive

lots of file I/O here...

...but no file I/O here

IBM Research

© 2007 IBM Corporation14 The broken file shredder - programming traps and pitfalls

File shredder problem #1
Failure to overwrite repeatedly

Because of delayed writes, the shred program
repeatedly overwrites the in-memory copy of the file,
instead of the on-disk copy.

for each pattern

overwrite file

IBM Research

© 2007 IBM Corporation15 The broken file shredder - programming traps and pitfalls

File shredder problem #2
Failure to overwrite even once

Because of delayed writes, the file system discards
the in-memory updates when the file is deleted.

The on-disk copy is never even updated!

for each pattern

overwrite file

remove file

IBM Research

© 2007 IBM Corporation16 The broken file shredder - programming traps and pitfalls

File shredder problem #3
Overwriting the wrong data

The program may overwrite the wrong data blocks.
fopen(path,”w”) truncates the file to zero length, and
the file system may allocate different blocks for the
new data.

if ((fp = fopen(filename, “w”)) == NULL)
/* error... */

for (count = 0; count < file_size; count += BUFFER_SIZE)

fwrite(buffer, BUFFER_SIZE, 1, fp);

fclose(fp); /* XXX no error checking */

IBM Research

© 2007 IBM Corporation17 The broken file shredder - programming traps and pitfalls

“Fixing” the file shredder program

if ((fp = fopen(filename, “r+”)) == 0) open for update, not truncate

/* error... */

for (count = 0; count < file_size; count += BUFFER_SIZE)

fwrite(buffer, BUFFER_SIZE, 1, fp);

if (fflush(fp) != 0) application buffer => kernel

/* error... */

if (fsync(fileno(fp)) != 0) kernel buffer => disk

/* error... */

if (fclose(fp) != 0) and only then close the file

/* error... */

IBM Research

© 2007 IBM Corporation18 The broken file shredder - programming traps and pitfalls

Limitations of file shredding

Write caches in disk drives and/or disk controllers may
ignore all but the last overwrite operation.

Non-magnetic disks (flash, NVRAM) try to avoid
overwriting the same bits repeatedly. Instead they
create multiple copies of data.

Not shredded: temporary copies from text editors,
copies in printer queues, mail queues, swap files.

Continued...

IBM Research

© 2007 IBM Corporation19 The broken file shredder - programming traps and pitfalls

Limitations of file shredding (continued)

File systems may relocate a file block when it is
updated, to reduce file fragmentation.

Disk drives relocate blocks that become marginal.

Journaling file systems may create additional
temporary copies of data (ext3fs: journal=data).

Copy-on-write file systems (like Solaris ZFS) never
overwrite a disk block that is “in use”.

None of these limitations exist with file systems that
encrypt each file with its own secret key.

IBM Research

© 2007 IBM Corporation20 The broken file shredder - programming traps and pitfalls

Lessons learned

An untold number of problems can hide in code that
appears to be perfectly reasonable.

Don’t assume, verify.
– Optimizations in operating systems and in hardware may

invalidate a program completely.

– Examine raw disk blocks (network packets, etc.)

Are we solving the right problem? Zero filling all free
disk space (and all swap!) may be more effective.

IBM Research

© 2007 IBM Corporation

UNIX File system
Traps, pitfalls, and solutions

Wietse Venema
IBM T.J.Watson Research Center
Hawthorne, NY, USA

IBM Research

© 2007 IBM Corporation2 UNIX File system - traps, pitfalls and solutions

Overview

UNIX file system architecture.
– Features.

– Gotchas (non-obvious consequences).

Vulnerability case studies.
– World-writable directories.

– Race conditions.

– Walking a hostile directory tree.

Lessons learned.

IBM Research

© 2007 IBM Corporation3 UNIX File system - traps, pitfalls and solutions

UNIX file system architecture

foo 123

bar 456

and so on...

Directory /home/you

Inode 123

data block #s
type=file/dir/etc

access perms

reference count

owner/group ID

data block

data block

data block

Data blockstime stamps

file size

filename inode

IBM Research

© 2007 IBM Corporation4 UNIX File system - traps, pitfalls and solutions

Direct and indirect data blocks
(the truth, the whole truth, and nothing but the truth)

inode
block 0

block 11

1 indirect

3 indirect

2 indirect

block 12

blk 2059

. . .

. . .

1 indirect blk 2060

1 indirect
4196363

. . .

. . .
. . .

2 indirect

2 indirect
. . .

1 indirectSpecific block numbers are typical for Berkeley FFS-like file systems

1 indirect. . .

IBM Research

© 2007 IBM Corporation5 UNIX File system - traps, pitfalls and solutions

UNIX file system features (gotchas will be next)

Separation of file name, file attributes, and file data
blocks.

Names may contain any character except “/” or null.

Shared name space for files, directories, FIFOs,
sockets, and device drivers such as /dev/mem or
/dev/ttya (“everything is a file”).

Permission check on open/execute, not read/write.

Files can have holes (regions without data blocks).

IBM Research

© 2007 IBM Corporation6 UNIX File system - traps, pitfalls and solutions

UNIX file system gotchas

Feature: separation of file name, file attributes, and file
data blocks.

– Multiple names per file system object (multiple directory
entries referring to the same file attribute block). Also
known as multiple hard links.
• Opportunities for name aliasing problems.

– Zero names per file system object (when a file is deleted,
the attributes and storage survive until the file is closed or
stops executing).
• A deleted file may not go away immediately.

IBM Research

© 2007 IBM Corporation7 UNIX File system - traps, pitfalls and solutions

UNIX file system gotchas

Symbolic links provide another aliasing mechanism
(a symbolic link provides a substitute pathname).

Feature: a file name may contain any character except
for “/” or null.
– Beware of file names containing space, newline, quotes,

other control characters, and so on.

– Many UNIX systems allow ASCII codes > 127, causing
surprises with signed characters.
• Example: isalpha() etc. table lookup with negative array index.

IBM Research

© 2007 IBM Corporation8 UNIX File system - traps, pitfalls and solutions

UNIX file system gotchas

Feature: shared name space for files, directories,
FIFOs, sockets, and device drivers such as /dev/mem
or /dev/tty01 (“everything is a file”).
– The open() call may cause unexpected results (like

blocking the program) when opening a non-file object.
• Example: opening a FIFO or a serial port device driver.

– Reading a non-file object such as /dev/mem may lock up
systems with memory-mapped hardware.
• Example: reading device control registers.

IBM Research

© 2007 IBM Corporation9 UNIX File system - traps, pitfalls and solutions

UNIX file system gotchas

Feature: access permission check happens on
open/execute not read/write.

– No general way to revoke access after a file is opened.
• This also applies to non-file objects such as sockets.

– Files must be created with correct permissions (as
opposed to setting permissions after creating them).

Feature: files can have holes (regions without data
blocks; these read as blocks of null bytes).
– The copy of a file can occupy more disk space than the

original file.

IBM Research

© 2007 IBM Corporation10 UNIX File system - traps, pitfalls and solutions

File system case study: The evils of world-
writable directories

IBM Research

© 2007 IBM Corporation11 UNIX File system - traps, pitfalls and solutions

Overview

Traditional UNIX mail delivery architecture.

Multiple security problems caused by world-writable
directories.

Plugging the holes that result from bad design.

“Solutions” introduce new problems.

Fixing the problem requires changing the design.

IBM Research

© 2007 IBM Corporation12 UNIX File system - traps, pitfalls and solutions

Traditional UNIX mail delivery architecture

mailbox file

Sendmail*

/bin/mail*

to networkfrom network

local submission

local delivery

local submission local delivery

owned by recipient

* = root privilege

IBM Research

© 2007 IBM Corporation13 UNIX File system - traps, pitfalls and solutions

Traditional UNIX mail delivery architecture

Mailbox files are typically named /var/mail/username.

Mailbox files are owned by individual users.
– Therefore, /bin/mail needs root privileges so that it can

create and update user-owned mailbox files1,2.

Mail reader programs are unprivileged.
– Therefore, the /var/mail mailbox directory needs to be

world writable so that mail reader software can create
/var/mail/username.lock files.

1Assuming that changing file ownership is a privileged operation.
2Historical Sendmail is privileged for other reasons (see part IV, Postfix).

IBM Research

© 2007 IBM Corporation14 UNIX File system - traps, pitfalls and solutions

/bin/mail delivery pseudocode

save message to temporary file

for each recipient

lock recipient mailbox file

append message to recipient mailbox file

unlock recipient mailbox file

IBM Research

© 2007 IBM Corporation15 UNIX File system - traps, pitfalls and solutions

Step 1: save to temporary file
in world-writable directory

char lettmp[] = "/tmp/maXXXXX"; /tmp is world-writable

. . .

main(argc, argv)

char **argv;

{ . . .

mktemp(lettmp); replace X’s by some unique string

unlink(lettmp); lame defense against attack
. . . window of vulnerability here

tmpf = fopen(lettmp, "w"); maybe open the right file, maybe not?

From file bin/mail.c in archive .../4BSD/Distributions/4.2BSD/src.tar.gz

IBM Research

© 2007 IBM Corporation16 UNIX File system - traps, pitfalls and solutions

What can go wrong?

/bin/mail
program

/etc/passwd/tmp/ma12345

save message to temporary file

hard link or

symbolic link

root privilege!

IBM Research

© 2007 IBM Corporation17 UNIX File system - traps, pitfalls and solutions

Step 2: append to mailbox file
in world-writable directory

if (!safefile(file)) lame defense against attack with symbolic

return(0); links or with multiple hard links

lock(file); window of vulnerability here

malf = fopen(file, "a"); maybe open the right file, maybe not?
. . . window of opportunity here

chown(file, pw->pw_uid, pw->pw_gid); cool :-)
. . .

copylet(n, malf, ORDINARY); append message

fclose(malf); XXX no error checking
. . .

unlock();

return(1);

From file bin/mail.c in archive .../4BSD/Distributions/4.2BSD/src.tar.gz

IBM Research

© 2007 IBM Corporation18 UNIX File system - traps, pitfalls and solutions

What can go wrong?

/bin/mail
program

/etc/passwd/var/spool/\
mail/username

append message to mailbox file

hard link or

symbolic link

root privilege!

IBM Research

© 2007 IBM Corporation19 UNIX File system - traps, pitfalls and solutions

Painless to safely create file in unsafe directory

For example, to save the message to temporary file:

if ((fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0600)) < 0)

/* error... */

– Will not follow symbolic links to other files.

– Will not open an existing (hard link to) file.

More convenient: mkstemp() creates a unique name
and creates the file using the above technique.

IBM Research

© 2007 IBM Corporation20 UNIX File system - traps, pitfalls and solutions

Painful to open existing file in unsafe directory
(from Postfix MTA)

if ((fd = open(path, O_APPEND | O_WRONLY, 0)) < 0) will follow symlink

/* error: open failed */
if (fstat(fd, &fstat_st) < 0) get open file attributes

/* error: cannot get open file attributes */

if (!S_ISREG(fstat_st.st_mode) check file type

/* error: not a regular file */

if (fstat_st.st_nlink != 1) check hard link count

/* error: file has the wrong number of hard links */

if (lstat(path, &lstat_st) < 0 won’t follow symlink

|| lstat_st.st_dev != fstat_st.st_dev || lstat_st.st_ino != fstat_st.st_ino)

/* error: file was removed or replaced */

IBM Research

© 2007 IBM Corporation21 UNIX File system - traps, pitfalls and solutions

Plugging /bin/mail like vulnerabilities
with world-writable directories

Create files with open(. .O_CREAT | O_EXCL. .). This
protects against symlink/hardlink attacks.

– Use mkstemp() to open a temporary file and to generate
a unique file name at the same time.

To open an existing file, compare open()+fstat() file
attributes with lstat() file attributes. This will expose
symbolic link aliasing attacks.

– See also: the Postfix safe_open() routine.

IBM Research

© 2007 IBM Corporation22 UNIX File system - traps, pitfalls and solutions

“Solutions” introduce new problems

Widely adopted remedy: group (not world) writable
/var/mail mailbox directory.

Unfortunately, this introduces its own set of problems.
– All mail reader programs need extra privileges to create

/var/mail/username.lock files.

– All mail reader programs are now part of the defense
(instead of only the /bin/mail delivery program). That is a
lot more code than just /bin/mail.

Thus, /bin/mail still needs to defend against attack.

IBM Research

© 2007 IBM Corporation23 UNIX File system - traps, pitfalls and solutions

Lessons learned

World-writable directories are the root of a lot of evil.
They are to be avoided at all cost.

Retrofitting security into a broken design rarely
produces a good result.

A proper solution addresses the underlying problem
and changes the mail delivery model. This of course
introduces incompatibility.

IBM Research

© 2007 IBM Corporation24 UNIX File system - traps, pitfalls and solutions

File system case study: The broken tree
walker

IBM Research

© 2007 IBM Corporation25 UNIX File system - traps, pitfalls and solutions

Overview

Purpose of the privileged tree walking program.

Buffer overflow problem due to mistaken assumptions
about the maximal pathname length.

There is no silver bullet. Long pathnames are a pain to
deal with no matter what one does.

How other programmers dealt with the problem.

IBM Research

© 2007 IBM Corporation26 UNIX File system - traps, pitfalls and solutions

Tree walker purpose

Walk down a directory tree and examine the attributes
of all files.

This program is run while configuring the TCB1 of a
security system.

The TCB may need updating whenever new software
is installed on the system.

1TCB=Trusted Computing Base, responsible for enforcing security policy.

IBM Research

© 2007 IBM Corporation27 UNIX File system - traps, pitfalls and solutions

What can go wrong?

Get into trouble by following symbolic links so that you
end up in an unexpected place.

Get into trouble with non-file objects (like those in the
/proc or /dev directories). This is “fixed” by blacklisting
portions of the file system name space.

Get into trouble with deeply nested directory trees.

IBM Research

© 2007 IBM Corporation28 UNIX File system - traps, pitfalls and solutions

Tree walker main loop

static void dir_list(char* dir_name, [other arguments omitted...])

{

. . .

char file_name[MAXPATHLEN];

. . .

for (each entry in directory dirname) {

sprintf(file_name, "%s/%s", dir_name, entry->d_name);
if (file_name resolves to a directory)

dir_list(file_name, [other arguments omitted...]);

Note: MAXPATHLEN (typically: 1024) is the maximal pathname length

accepted by system calls such as open(), chdir(), remove(), etc.

IBM Research

© 2007 IBM Corporation29 UNIX File system - traps, pitfalls and solutions

Tree walker vulnerability

Buffer overflow in a security configuration tool! Real
pathnames can exceed the MAXPATHLEN limit of
system calls such as open(), chdir(), etc.

Possible remedies:

– Abort if pathname length >= MAXPATHLEN.
– Skip if pathname length >= MAXPATHLEN.
– Pass the problem to the user of the result.

• Use chdir() to avoid system call failures within the tree
walking program.

• Use a variable length result buffer to avoid buffer overflows.

IBM Research

© 2007 IBM Corporation30 UNIX File system - traps, pitfalls and solutions

What did other programmers do?

The UNIX tar (tape archive) format cannot store files
with pathnames longer than 10241.

The UNIX find command changes directory (chdir())
and leaves it to the user to handle long pathnames2.

Beware: changing directory can be dangerous when
the directory tree is under control by an attacker.

1See: Elizabeth Zwicky, Torture-testing Backup and Archive Programs.

24.4BSD, Solaris, Linux.

IBM Research

© 2007 IBM Corporation31 UNIX File system - traps, pitfalls and solutions

UNIX file system lessons learned

Exercise extreme caution when doing anything in an
untrusted directory or directory tree:

– Creating a file. Hard/symlink attacks.

– Open existing file. Hard/symlink attacks; non-files.

– Reading a file. Non-file objects (FIFO, device, etc).

– Removing a file. Hard/symlink attacks.

– Manipulating file names. Spaces, control chars, ...

– Changing directory. Where will you go today?

IBM Research

© 2007 IBM Corporation32 UNIX File system - traps, pitfalls and solutions

UNIX Lessons learned

UNIX has been around for 35+ years. Its strengths and
weaknesses are relatively well understood.

As with many systems, shortcomings are the
unintended result from decisions made long ago.

Experience teaches us to avoid what is broken and to
build on the things that are good.

IBM Research

© 2007 IBM Corporation

UNIX Setuid programming
Traps, pitfalls, and solutions

Wietse Venema
IBM T.J.Watson Research Center
Hawthorne, NY. USA

IBM Research

© 2007 IBM Corporation2 UNIX Set-uid programming - traps, pitfalls and solutions

Overview

� The UNIX set-uid and set-gid mechanisms.

� Examples of vulnerabilities.
– Inherited default file permissions.
– Inherited process name.
– Inherited open files.
– Signal handlers.

� Bad and good alternatives.

IBM Research

© 2007 IBM Corporation3 UNIX Set-uid programming - traps, pitfalls and solutions

Set-uid and set-gid in a nutshell

� Normally, a program file executes with the effective
(user ID, group ID) of the process that invokes it1.

� A set-uid (set-gid) file runs with the effective user ID
(group ID) of the file owner1; i.e. with some or all of the
owner’s access privileges.

� Example: allow unprivileged users to update their own
password file entry, without allowing them to update
the password file directly.

1And with the auxiliary group IDs of the invoking process.

IBM Research

© 2007 IBM Corporation4 UNIX Set-uid programming - traps, pitfalls and solutions

Set-uid example: controlled password file update

user passwd
command

password
file

unprivileged
user set-uid root

owned by root,
writeable by root

write
forbidden

IBM Research

© 2007 IBM Corporation5 UNIX Set-uid programming - traps, pitfalls and solutions

Getting privileges is easy, dropping them is hard

� Tricky to permanently drop set-uid privileges: different
systems use different system calls1. With some old
UNIX systems only set-uid root processes can
permanently drop set-uid privileges.

� Similar problems exist with set-gid privileges.

1Hao Chen, David Wagner, Drew Dean, Setuid Demystified.

11th USENIX Security Symposium, San Francisco, 2002.

http://www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf

IBM Research

© 2007 IBM Corporation6 UNIX Set-uid programming - traps, pitfalls and solutions

Generic attacks on software (set-uid/gid or not)

� Parsing errors

� Buffer overflows

� Race conditions

� Incorrect access permissions

� Weak authentication

� Trust without verification

� Resource starvation

� Timing attacks

� Poor encryption

� Poor key generation

� And so on...

IBM Research

© 2007 IBM Corporation7 UNIX Set-uid programming - traps, pitfalls and solutions

Additional attack opportunities with set-uid/gid
software due to process attribute inheritance

� command line + process name

� process environment

� open files (too many/too few)

� resource limits (file size etc.)

� umask (default file permission)

� process priority (race attacks)

� pending timers

� signal (enable/disable) mask

� current directory

� (root directory)

� child processes (!)

� POSIX session (signals)

� controlling terminal (signals)

� process group (signals)

� secondary group IDs

� (process ID)

� parent process ID

� attacks via /proc

� unsafe signal handlers
(using the inherited real UID)

IBM Research

© 2007 IBM Corporation8 UNIX Set-uid programming - traps, pitfalls and solutions

�Set-uid case study: attacks via inherited
default file access permissions

IBM Research

© 2007 IBM Corporation9 UNIX Set-uid programming - traps, pitfalls and solutions

Intended use: controlled password file update

user passwd
command

password
file

unprivileged
user set-uid root

owned by root,
writeable by root

write
forbidden

IBM Research

© 2007 IBM Corporation10 UNIX Set-uid programming - traps, pitfalls and solutions

UNIX passwd command purpose and
implementation

� Purpose: the passwd command is set-uid root, so that
unprivileged users can make controlled changes to
their own entry in the protected system password file.

� Pseudo code, ignoring file locking issues:
– Sanity check the old and new passwords.

– Copy current password file to new password file,
replacing old password by new password.

– Rename new password file to current password file.

IBM Research

© 2007 IBM Corporation11 UNIX Set-uid programming - traps, pitfalls and solutions

Default access permission vulnerability

pwfile = fopen(SH_TMPFILE, "w"); create new password file

with default access permissions

. . .other initialization. . .

chmod(SH_TMPFILE, 0600); forbid read/write access

by “group” and “other”

. . .update the new password file. . .

if (fclose(pwfile))

/* error... */

if (!err)

rename(SH_TMPFILE, "/etc/shadow"); replace old password file

See: http://www.securityfocus.com/archive/1/138706 and follow-ups.

IBM Research

© 2007 IBM Corporation12 UNIX Set-uid programming - traps, pitfalls and solutions

Default access permission exploit

user passwd
command

new pass-
word file

unprivileged
user set-uid root

owned by root
world writable

write
allowed!

permission is checked on
open, not on read/write

IBM Research

© 2007 IBM Corporation13 UNIX Set-uid programming - traps, pitfalls and solutions

Default access permissions exploit

� Invoke the passwd command with umask of zero.
Optionally run the command at reduced priority.
$ umask 0 default: world write permission

$ nice -20 passwd make it run slower

� The passwd command will create the new password
file with world write permissions:

pwfile = fopen(SH_TMPFILE, "w"); create rw-rw-rw- file

� Attack: open the new file for read/write access before
the passwd command changes its access permissions.

IBM Research

© 2007 IBM Corporation14 UNIX Set-uid programming - traps, pitfalls and solutions

Fixing the default access permissions vulnerability

� Reset default permissions to an appropriate value:
 saved_mask = umask(077); default: rw - - - - - - -

 fp = fopen(pathname, “w”);

� Instead of fopen(), use a lower-level routine that
creates the file with the right access permissions:
 fd = open(pathname, O_CREAT | O_WRONLY, 0600);

 fp = fdopen(fd, “w”); see Postfix safe_open() function

� See also the “UNIX file system” segment on opening
files in an untrusted directory.

IBM Research

© 2007 IBM Corporation15 UNIX Set-uid programming - traps, pitfalls and solutions

�Set-uid case study: attacks via inherited
process name

IBM Research

© 2007 IBM Corporation16 UNIX Set-uid programming - traps, pitfalls and solutions

Process name attack intro

� Context: set-uid root security “access gate” programs
log their executable file name for audit trail purposes.

– Take the process name (the first command line element).

– Search the PATH environment variable for a directory
with a file that matches the process name.

– Store the directory and file name in a buffer of
MAXPATHLEN characters (typically, 1024 bytes).

IBM Research

© 2007 IBM Corporation17 UNIX Set-uid programming - traps, pitfalls and solutions

Two process name exploits

� Both PATH and process name (first element of the
command line) are under control by the attacker.

putenv(“PATH=/bin:/usr/bin”); /* environment */

execl(“/bin/su”, “passwd”, (char *) 0); /* command line */

Executes /bin/su with the process name passwd.

� The audit trail shows /bin/passwd instead of /bin/su.

� The process name can be up to 100kB-1MB long,
overflowing the MAXPATHLEN pathname buffer.

IBM Research

© 2007 IBM Corporation18 UNIX Set-uid programming - traps, pitfalls and solutions

Fixing the executable pathname lookup

� On systems with the /proc pseudo file system:

– FreeBSD: /proc/pid/file is symbolic link with the full
pathname of the executable file1.

– Linux: /proc/pid/exe is symbolic link with the full
pathname of the executable file.

– Solaris: /proc/pid/as has the executable file name buried
deep in the process address space (name can be
displayed with, e.g., the pmap command)2.

With too long pathname: 1result = “unknown”; 2result = relative pathname

IBM Research

© 2007 IBM Corporation19 UNIX Set-uid programming - traps, pitfalls and solutions

�Set-uid case study: attacks via inherited
open files

IBM Research

© 2007 IBM Corporation20 UNIX Set-uid programming - traps, pitfalls and solutions

Standard open file environment

� Normally, each UNIX process runs with at least three
open streams:
– file number 0 (standard input).

– file number 1 (standard output).

– file number 2 (standard error)1.

� Typically, all three streams are connected to the
user’s terminal.

1Error messages are written to file #2, so that they don’t disappear when

the standard output stream is directed to file or pipe.

0 1

2

stdin stdout

stderr

IBM Research

© 2007 IBM Corporation21 UNIX Set-uid programming - traps, pitfalls and solutions

What can go wrong?

� What happens if some of these streams are closed
before the process is started? For example:
– open: file number 0 (stdin).

– open: file number 1 (stdout).

– closed: file number 2 (stderr).

� The next file to be opened will be assigned file# 2.

� If this is the new password file, then user controlled
error messages may end up in the password file!

0 1

2

stdin stdout

stderr

IBM Research

© 2007 IBM Corporation22 UNIX Set-uid programming - traps, pitfalls and solutions

TCP Wrapper / Postfix defense against open file
problems

/*
* To minimize confusion, make sure that the standard file descriptors
* are open before opening anything else. XXX Work around for 44BSD
* where fstat() can return EBADF on an open file descriptor.
*/
for (fd = 0; fd < 3; fd++)

if (fstat(fd, &st) == -1
&& (close(fd), open("/dev/null", O_RDWR, 0)) != fd)
msg_fatal("open /dev/null: %m");

Note: some BSD kernels force stdin/stdout/stderr to be open before

process startup.

IBM Research

© 2007 IBM Corporation23 UNIX Set-uid programming - traps, pitfalls and solutions

�Exploiting signal handlers in set-uid/gid
software

IBM Research

© 2007 IBM Corporation24 UNIX Set-uid programming - traps, pitfalls and solutions

Typical use of signal(): clean up and terminate

void handler(int sig)
{

printf(“Interrupted!\n”); Unsafe!
. . . clean up . . .
exit(1); Unsafe!

}

int main(int argc, char **argv)
{

signal(SIGINT, handler); Control-C, or kill(2) call by process
. . . normal processing. . . with suitable real or effective UID

}

IBM Research

© 2007 IBM Corporation25 UNIX Set-uid programming - traps, pitfalls and solutions

Signal handler exploits: memory corruption

 void handler(int sig)
 {
 printf(“Interrupted!\n”); Unsafe!
 . . . clean up . . .
 exit(1); Unsafe!
 }

� printf() invokes malloc(), which manages the heap.

� printf() manages its own data structures and pointers.

� exit() flushes standard I/O streams and invokes
optional atexit() application call-back routines.

IBM Research

© 2007 IBM Corporation26 UNIX Set-uid programming - traps, pitfalls and solutions

Safe signal handler: set flag and do nothing else

 void handler(int sig)
 {
 got_signal = 1;
 }

� Set a global variable in the signal handler, and
examine the variable in the non-signal handler code.

� When setting a variable to implement some mutex,
use a small enough data type such as sig_atomic_t.
On a 32-bit machine, 64-bit updates are not atomic.

IBM Research

© 2007 IBM Corporation27 UNIX Set-uid programming - traps, pitfalls and solutions

Safe signal handling - exit safely (from Postfix)

 void handler(int sig)
 {
 if (signal(SIGINT, SIG_IGN) != SIG_IGN) { . . . only once . . .
 . . . clean up . . .
 _exit(1) . . . safe exit . . .
 }
 }

� signal(), sigaction(), etc. are atomic. The above code
protects signal handlers against nested interrupts.

� _exit() does not flush standard I/O streams and does
not invoke atexit() application call-back routines.

IBM Research

© 2007 IBM Corporation28 UNIX Set-uid programming - traps, pitfalls and solutions

�Avoiding attacks on set-uid/gid commands

IBM Research

© 2007 IBM Corporation29 UNIX Set-uid programming - traps, pitfalls and solutions

Bad alternative - parent/child
(from secure programming cookbook)

� The user invokes the privileged command.

� The command fork()s a child that drops privileges.

� All user input/output goes through the child process.

� Problem: the parent (and child) still inherit evil process
attributes from the malicious user!

child parentuser

unprivileged privileged
in

out

IBM Research

© 2007 IBM Corporation30 UNIX Set-uid programming - traps, pitfalls and solutions

client serveruser

transient persistent

Good alternative - client/server
(Postfix MTA, version 1.0 and earlier)

� Privileged process runs as persistent server.

� User process runs as transient client.

� The server inherits no process attributes from the user.

� Narrow protocol protects server against attack.

in

out

IBM Research

© 2007 IBM Corporation31 UNIX Set-uid programming - traps, pitfalls and solutions

Better alternative: client/server, protected channel
(Postfix MTA, version 1.1 and later)

� Protected resource is managed by server process.

� Client-server channel requires group access privilege
(ex: FIFO, UNIX-domain socket, or drop-off directory).

� Small set-gid client “guard” protects access to channel.

� Narrow protocol protects server against attack by
compromised set-gid client “guard” process.

client serveruser

channel
in

out

IBM Research

© 2007 IBM Corporation32 UNIX Set-uid programming - traps, pitfalls and solutions

� Final words

IBM Research

© 2007 IBM Corporation33 UNIX Set-uid programming - traps, pitfalls and solutions

Recap: extra attack opportunities with set-uid/gid
commands due to process attribute inheritance

� command line + process name

� process environment

� open files (too many/too few)

� resource limits (file size etc.)

� umask (default file permission)

� process priority (race attacks)

� pending timers

� signal (enable/disable) mask

� current directory

� (root directory)

� child processes (!)

� POSIX session (signals)

� controlling terminal (signals)

� process group (signals)

� secondary group IDs

� (process ID)

� parent process ID

� attacks via /proc

� unsafe signal handlers
(using the inherited real UID)

IBM Research

© 2007 IBM Corporation34 UNIX Set-uid programming - traps, pitfalls and solutions

Set-uid/gid lessons learned

� Don’t use set-uid/set-gid unless absolutely necessary.

� If you think that set-uid is necessary, then you are
probably mistaken.

� Instead of set-uid, try to use set-gid instead. Many
access checks use the effective UID only. This limits
the impact of group ID compromise.

� Defending against all known attack methods is not
sufficient. New set-uid/set-gid attack opportunities
arise as UNIX systems add new process attributes.

IBM Research

© 2007 IBM Corporation35 UNIX Set-uid programming - traps, pitfalls and solutions

Setuid programming checklists and tips

� Garfinkel, Spafford, Schwartz: Practical UNIX &
Internet Security. Chapter 16, Secure Programming
Techniques, includes a checklist.

� Matt Bishop: How to Write a Setuid Program; Robust
Programming; and other resources at:
http://nob.cs.ucdavis.edu/~bishop/secprog/

� The BSDI setuid(7) manual page.
http://www.homeport.org/~adam/setuid.7.html

IBM Research

© 2007 IBM Corporation

The Postfix mail server
A secure programming example

Wietse Venema
IBM T.J. Watson Research Center
Hawthorne, USA

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Expectations before the first Postfix release...

[Postfix]: No experience yet, but I’d guess something like a wisened
old man sitting on the porch outside the postoffice. Looks at
everyone who passes by with deep suspicion, but turns out to be
friendly and helpful once he realises you’re not there to rob the
place.

Article in alt.sysadmin.recovery

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Overview

Why write yet another UNIX mail system?

Postfix architecture and implementation.

Catching up on Sendmail, or how Postfix could grow
4x in size without becoming a bloated mess.

The future of Postfix and other software as we know it.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Why (not) write yet another UNIX mail
system

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

New code, new bug opportunities

Code line counts for contemporary software:

Windows/XP: 40 million; Vista 50+ million.

Debian 2.2: 56 million; 3.1: 200+ million.

Wietse’s pre-Postfix average: 1 bug / 1000 lines1.

Postfix public release: 30k lines of opportunity1,2.

1Not included: comment lines, or bugs found in development.
2Today: 97k lines of code.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

CERT/CC UNIX mail advisories
(it’s not just about Sendmail)

Bulletin Software Impact
CA-1988-01 Sendmail 5.58 run any command
CA-1990-01 SUN Sendmail unknown
CA-1991-01 SUN /bin/mail root shell
CA-1991-13 Ultrix /bin/mail root shell
CA-1993-15 SUN Sendmail write any file
CA-1993-16 Sendmail 8.6.3 run any command
CA-1994-12 Sendmail 8.6.7 root shell, r/w any file
CA-1995-02 /bin/mail write any file

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

CERT/CC UNIX mail advisories

Bulletin Software Impact
CA-1995-05 Sendmail 8.6.9 any command, any file
CA-1995-08 Sendmail V5 any command, any file
CA-1995-11 SUN Sendmail root shell
CA-1996-04 Sendmail 8.7.3 root shell
CA-1996-20 Sendmail 8.7.5 root shell, default uid
CA-1996-24 Sendmail 8.8.2 root shell
CA-1996-25 Sendmail 8.8.3 group id
CA-1997-05 Sendmail 8.8.4 root shell

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

CERT/CC UNIX mail advisories

Bulletin Software Impact
CA-2003-07 Sendmail 8.12.7 remote root privilege
CA-2003-12 Sendmail 8.12.8 remote root privilege
CA-2003-25 Sendmail 8.12.9 remote root privilege

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Traditional UNIX mail delivery architecture

mailbox file

Sendmail*

/bin/mail*

to networkfrom network

local submission

local delivery * uses root privileges

to |command**

to /file/name**

** in ~/.forward files
and in /etc/aliasesowned by recipient

executed as recipient

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Root privileges in UNIX mail delivery

Mailbox files are owned by individual users.
– Therefore, /bin/mail needs root privileges so that it can

create / update user-owned mailbox files1.

“|command” and /file/name destinations in aliases and
in user-owned ~/.forward files.
– Therefore, sendmail needs root privileges so that it can

correctly impersonate recipients2.

1Assuming that changing file ownership is a privileged operation.
2On UNIX systems, impersonation is always a privileged operation.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Postfix implementation - planning for
failure

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Postfix primary goals
(It’s not only about security)

Compatibility: make transition easy.

Wide deployment by giving it away.

Performance: faster than the competition.

Security: no root shells for random strangers.

Flexibility: C is not an acceptable scripting language.

Reliability: behave rationally under stress.

Easy to configure: simple things should be easy.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Challenges: complexity
(How many balls can one juggle without dropping one)

As we have learned, complexity != security.

Multi-protocol: SMTP/DNS/TLS/LDAP/SQL/Milter.

Broken implementations: clients, servers, proxies.

Concurrent mailbox “database” access.

Complex mail address syntax <@x,@y:a%b@c>.

Queue management (thundering herd).

SPAM and Virus control.

Anti-spoofing: DKIM, SenderID, etc., etc.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Strategies: divide and conquer
(Juggle fewer balls, basically)

Partitioned architecture (more on this next).

More-or-less safe extension mechanisms:
– Use SMTP or “pipe-to-command” for content inspection;

let other people provide applications that do the work.

– Simple SMTP access delegation protocol; let other people
provide spf, greylist etc. applications.

– Adopt Sendmail V8 Milter protocol; let other people
provide anti-spoofing or content filter applications.

More-or-less safe C programming API (example later).

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Remote client

Mail queue

Local sender
Local recipient

mailbox /file/name
“|command”

Remote server

Each arrow represents a privilege domain transition

UNIX mail systems cross (too) many privilege
domains

untrusted untrusted

untrusted impersonated

owned by mail system

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Remote client

Local sender
Local recipient

mailbox /file/name
“|command”

Remote server

Dangers of monolithic privileged MTAs: no
damage control

untrusted untrusted

untrusted impersonated

Monolithic mail system
(with root privilege)

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Dangers of monolithic privileged MTAs: no
damage control

One program touches all privilege domains.
– Make one mistake and any remote client can execute

any command, or read/write any file - with root privilege.

No internal barriers:
– Very convenient to implement.

– Very convenient to break into.

Postfix architecture prepares for failure, using multiple
safety nets.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Postfix service-based architecture
(not shown: local submission, lmtp and qmqp protocols)

smtpd

local
pickup

smtpdinternet
smtp

server

4 other
programs

smtpd
smtpd

local
delivery

smtpdsmtpd
smtp
client

internet

mailbox
|command
/file/name

queue
directories

privileged

smtpdsmtpd
to external
transports

uucp
fax
pager

privileged

unprivileged

unprivileged

unprivileged

unprivileged

smtp
client

(local submission)

= root privilege
= postfix privilege

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Postfix security principles

Compartmentalize. Use one separate program per
privilege domain boundary1.

Minimize privilege. Use system privilege only in
programs that need to impersonate users. Many
unprivileged daemons can run inside a chroot() jail.

Do not trust queue file or IPC message content for
sensitive decisions (e.g.: impersonation of recipients;
command execution).

Multi-layer defense of safety nets and sanity checks.
1Hidden privilege domain boundaries: DNS, LDAP, SQL, NIS, Netinfo, etc.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Low-level example - avoiding buffer overflow
vulnerabilities

80-Column punch cards became obsolete years ago.

Fixed-size buffers always have the wrong size: they are
either too small, or too large.

Exploit: “specially-crafted” input overwrites function call
return address, function pointer, or some other critical
information.

Dynamic buffers are only part of the solution: they
introduce new problems of their own.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Memory exhaustion attacks

IBM web server: never-ending request.
forever { send “XXXXXX...” }

qmail 1.03 on contemporary platforms.

– Never-ending request:
forever { send “XXXXXX....” }

– Never-ending recipient list:
forever { send “RCPT TO <address>\r\n” }

Impact: exhaust all virtual memory on the system;
possibly crash other processes.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Dynamic buffers with safety nets

Upper bounds on the sizes of object instances.
– With SMTP, 2048-character input lines are sufficient. In

other words, Postfix simulates larger punch cards.

Upper bounds on the number of object instances.

Plus some special handling for large items.
– Limit the total length of each individual multi-line

message header line (To:, Received:, etc.).

– Don’t limit the length of message body lines; process
them as chunks of 2048 bytes, one chunk at a time.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Catching up on Sendmail - the benefits of a
security architecture

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Catching up on Sendmail

How Postfix has grown in size, from a qmail1-like
subset to a complete mail server.

Where did all that code go?

Why Postfix could grow 4x in size without becoming a
bloated mess.

Why writing Postfix code is like pregnancy.

1A direct competitor at the time of the first Postfix release.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

How Postfix has grown in size

Initial trigger: the Postfix 2.2 source tar/zip file was
larger than the Sendmail 8.13 tar/zip file.

Analyze eight years of Sendmail, Postfix, and qmail
source code:
– Strip comments (shrinking Postfix by 45% :-).

– Format into the “Kernighan and Ritchie C” coding style
(expanding qmail by 25% :-).

– Delete repeating (mostly empty) lines.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

MTA Source lines versus time

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Where did all that code go?
(from Postfix alpha to Postfix 2.3)

4x Growth in size, 8400 lines/year, mostly same author.

Small increase:
– 1.3x Average program size (800 to 1100 lines).

Medium increase:
– 2.5x Program count (from 15 to 36).

Large increase:
– 4x Library code (from 13000 to 52000 lines).

No increase: number of privileged programs.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Why Postfix could grow 4x and not become a
bloated mess

Typically a major Postfix feature is implemented by a
new server process and a small amount of client code.
Recent examples of servers:
– flush(8) on-demand delivery cache.

– scache(8) outbound connection cache.

– tlsmgr(8) TLS session key and random number cache.

– verify(8) email address verification probes and cache.

This is not a coincidence. It is a benefit of the Postfix
security architecture.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Postfix service-based architecture

smtpd

local
pickup

smtpdinternet
smtp

server

20 other
programs

smtpd
smtpd

local
delivery

smtpdsmtpd
smtp
client

internet

mailbox
|command
/file/name

queue
directories

privileged

smtpdsmtpd
to external
transports

uucp
fax
pager

privileged

unprivileged

unprivileged

unprivileged

unprivileged

smtp
client

(local submission)

= root privilege
= postfix privilege

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Good news: the Postfix security architecture
preserves integrity

Normally, adding code to an already complex system
makes it even more complex.
– New code has unexpected interactions with already

existing code, thus reducing over-all system integrity.

The Postfix architecture encourages separation of
functions into different, untrusting, processes.
– Each new major Postfix feature is implemented as a

separate server with its own simple protocol.

– This separation minimizes interactions with already
existing code, thus preserving system integrity.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Bad news: writing major Postfix feature is like
pregnancy

Time: throwing more people at the problem will not
produce a faster result.
– The typical time to complete a major feature is limited to

1-2 months. If it takes longer it gets snowed under by
later developments. Postfix evolves in Internet time.

Size: the result can have only a limited size.
– With Postfix, a typical major feature takes about 1000

lines of code, which is close to the average size of a
command or daemon program.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Conclusions and resources

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Future of Postfix

Postfix >=2.3 is complete enough that I am no longer
embarassed to recommend it to other people.
– Built-in: TLS, SASL, MIME, IPv6, LDAP, SQL, DSN

(Delivery Status Notification: success, failed, etc).

Further extension via plug-in interfaces.
– Domain Keys, DKIM, SenderID, SPF.

– Non-Cyrus SASL authentication, content inspection.

– Sendmail Milter applications, SMTP server access policy.

Clean up internals, logging, hard-coded behavior.

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Postfix author receives Sendmail Milter innovation
award

MOUNTAIN VIEW, Calif. October 25th, 2006 Today at its 25

Years of Internet Mail celebration event, taking place at the

Computer History Museum in Mountain View, California, Sendmail,

Inc., the leading global provider of trusted messaging, announced

the recipients of its inaugural Innovation Awards.

. . .

Wietse Venema, author, for his contribution of extending Milter

functionality to the Postfix MTA.

http://www.sendmail.com/pdfs/pressreleases/Sendmail%20Innovation%20Awards_10%2025%2006_FINAL.pdf

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Future of software as we know it

It is becoming less and less likely that someone will
write from scratch another full-featured
– Postfix or Sendmail like MTA (100 kloc).

– BSD/LINUX kernel (2-4 Mloc).

– Web browser (Firefox: 2 Mloc),

– Window system (X Windows: 2 Mloc).

– Desktop suite (OpenOffice: 5 Mloc)

– etc.

Creationism loses, Evolutionism and ID rules:-)

IBM Research

© 2007 IBM CorporationThe Postfix mail server - a secure programming example

Postfix Pointers

The Postfix website at http://www.postfix.org/

Richard Blum, Postfix (2001).

Kyle Dent, Postfix The Definitive Guide (2003).

Peer Heinlein, Das Postfix Buch, 2nd ed (2004).

Ralf Hildebrandt, Patrick Koetter, The Book of Postfix
(2005).

Books or translations in Japanese, Chinese, Czech,
other languages.

