
Copyright 2007 Carnegie Mellon University 1

A Decision Support System for Vulnerability
Response

Hal Burch
CERT/CC

Art Manion
CERT/CC

Yurie Ito
JPCERT/CC

Abstract: Every day, CSIRTs respond to vulnerability reports, judging which are
important enough to publish. For the thousands of reports received each year,
CSIRTs must analyze the vulnerability to determine the software systems it
affects, the actions an attacker must take to successfully exploit it, and the
resulting impact. After analysis, CSIRTs too often formulate their response using
an ad-hoc, informal decision-making process based solely on individual and
organizational experience. Vulnerability Response Decision Assistance (VRDA)
is designed to compile analysis efforts between organizations and to help
rationally structure decisions. VRDA first allows organizations to tap into
structured vulnerability information previously analyzed elsewhere. It then
employs mathematical models to filter out irrelevant vulnerabilities and
recommends products or actions to respond to the vulnerability. VRDA consists
of a data exchange format, a decision making model, a decision model creation
technique, and a tool embodying these concepts. VRDA enables organizations to
spend less time analyzing immaterial vulnerabilities, to make decisions more
consistently, and to structure decisions to better align with goals.

Overview
Each year, CSIRTs must process a large volume of vulnerability information. CERT/CC1
recorded 8,064 vulnerabilities [CERT 06] and CVE recorded 6,604 vulnerabilities [NVD
06] in 2006. CSIRTs analyze each one to determine which software systems are affected,
the degree of difficulty for an attacker to successfully exploit the vulnerability, and its
impact. Once this analysis is complete, the CSIRT must determine whether or not the
vulnerability warrants further action, whether that means producing an advisory, doing
further analysis, or responding to the vulnerability in some other way. This expensive
analysis is replicated at multiple CSIRTs around the world, resulting in considerable
duplication of effort.

In addition to this redundant effort, many organizations make decisions about
vulnerabilities in an ad hoc manner, usually meaning that resident experts use their
experience to guide their decision-making. The experts may be able to explain the general
guidelines they follow, but experts at the same organization can and often do disagree

1 CERT and CERT Coordination Center are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

Copyright 2007 Carnegie Mellon University 2

about what actions a vulnerability warrants. Moreover, the decisions of individuals at a
CSIRT may not represent the policies of the CSIRT or the concerns of its constituency.

We propose the VRDA system to reduce duplication of effort, improve efficiency, and
provide structure to decision-making. This system includes an interchange model, a
model for computer-assisted decision-making, and a tool embodying those concepts. The
system is designed so that a CSIRT need only employ the system features that meet their
needs.

Tasks
Tasks, in this system, are defined as actions a VRDA user performs in response to a
vulnerability report. Tasks are a major component of VRDA output – VRDA helps a user
decide which tasks make up an appropriate response. Examples of tasks include
publishing an advisory, notifying select groups, or initiating a patching process. One
important task is to intentionally take no action, so as to ignore vulnerability reports that
do not affect a CSIRT’s constituency or are otherwise not severe enough to warrant
further effort.

Facts
Facts, as defined here, are properties of vulnerabilities. A vulnerability report is
represented in VRDA by a set of facts. VRDA proposes a set of core facts; however, any
property of a vulnerability that informs the response decision can (and should) be
recorded. Examples of core VRDA facts include impact, access and authentication
requirements, exploit activity, and patch availability.
Lightweight affected product tags (LAPTs) are identifiers for products that are affected
by vulnerabilities. LAPTs consist of LAPT names and sets of product-related facts.
LAPT names are shared among all VRDA users, but LAPT facts are specific to
individual users. A LAPT name is typically a vendor, product, or technology (e.g.
Microsoft-Windows, Apple-QuickTime, or ICMP). Two examples of LAPT facts are the
population and importance of affected systems. VRDA users provide values for LAPT
facts, since users typically know their inventories and asset values better than CSIRTs. In
practice, a CSIRT labels a vulnerability report with an LAPT and a VRDA user provides
the values for population and importance associated with the LAPT name.

Default Fact Sets (DFS) are sets of facts with preset values. Similar vulnerabilities or
classes of vulnerabilities have similar properties, and this should be reflected by VRDA
fact values. DFS provides a way to define which facts and values are common to certain
types of classes of vulnerabilities. Like LAPTs, DFS consist of a DFS name and one or
more fact values. Unlike LAPTs, DFS facts are not tied to product identity and are not
necessarily provided by the VRDA user. An analyst can use a DFS to quickly and
accurately record facts that are generally applicable to a class of vulnerability reports.

Copyright 2007 Carnegie Mellon University 3

DFS facts are not fixed, they are set when the DFS is applied and can be modified by an
analyst as needed. The name of a DFS is also recorded as a fact. An example DFS is
cross-site scripting (XSS). For an XSS vulnerability report, a DFS applies the default
values for attacker access and impact facts, and then labels the report with the DFS name,
XSS. An analyst can modify facts set by the DFS as necessary.

Data Exchange
Rather than attempting to enumerate all possible structured vulnerability information one
may want to represent, the data exchange format is generic and flexible, allowing each
organization to decide what data it wishes to publish and consume. Although there is a
core set of facts, it may be extended or omitted to better serve the needs of organizations.
The format is based on VULDEF [VULDEF]. However, VRDA differs from VULDEF in
that fields required by VULDEF that are not central to the exchange of structured
information are optional fields in VRDA. The format consists of a label for the
vulnerability, a title, a list of affected software, and a set of facts with values.
The process model we describe starts with one organization publishing structured
vulnerability information using the VULDEF format. Other organizations can then use
that information, combining it with their own analyses to produce an enhanced set of
facts upon which they will base their decisions. After their additions and refinements, the
organization can then share the structured information further.

For example, a CSIRT at a large company might download information published that
day by the CERT/CC. It can then cross-reference the list of affected software with its
inventory information to determine which internal systems are affected. Based on that
evaluation, it can determine which business units need to be notified. It republishes to
those units, which may then, in turn, employ a similar process to make decisions.

Model for Decision Making
The decision making model is based on decision trees. (An example of a decision tree is
shown in Figure 1.) The evaluation of a decision tree begins at the root. At each node
along the evaluation path, the path follows the “child” corresponding to the value of the
attribute associated with that node. In the example decision tree, if the population is high,
then you follow the left child, at which point the difficulty of exploit is considered. If the
difficulty of exploit is low, then the decision tree points to “must.”

We used decision trees because recommended behaviors are clearly indicated and can be
easily modified. Although we expect the decision trees to be computed based on recorded
decisions for past vulnerabilities, these computed trees might need to be refined.

Copyright 2007 Carnegie Mellon University 4

Figure 1 - Sample Decision Tree for VRDA

For example, an organization may not, as a matter of policy, need to independently verify
reports from a certain source. Or, it may always respond in the same way to other types
of reports. In a decision tree, modifying the tree to represent these policies can be done
clearly and simply. Alternative decision models, such as neural nets or regression, might
be better able to capture the intricacies of the decision making process, but these models
lack any ability to convey what policy they implement other than by example. They also
do not provide the ability to simply “handtune” the model.
We expect the resulting decisions to be imperfect. However, we compensate for that by
giving gradients of decisions, rather than Boolean values. In particular, we use four
levels: must, should, might, and won’t. The goal is that the resulting decision level should
not differ more than one from the “correct” value. Since, in our experience, experts often
disagree more widely than that anyway, this accuracy may be ambitious. In any case, the
decisions serve as a guideline, rather than a rule, for vulnerability handlers. This allows
for automated prioritization, including deciding to ignore vulnerabilities whose
evaluation is won’t for all decisions. This reduces the load on handlers within a CSIRT.

Future Direction
The CERT/CC employs a basic form of this system. Using this decision model, slightly
more than half of the vulnerabilities recorded by our public monitoring team are not
assigned to a vulnerability analyst. This reduces the workload, both perceived and actual,
of the vulnerability analysts, improves morale, and makes them more efficient. Of the
thousands of vulnerabilities discarded thus far, less than five vulnerabilities were later
found to warrant assignment. Each of these errors resulted from a public monitor not
being aware of the prevalence of the software product.

Copyright 2007 Carnegie Mellon University 5

That is, the decision-making was wrong because the input was wrong. To reduce such
errors, the CERT/CC is developing an independent “Ubiquity” system to better estimate
populations of software products.
JPCERT/CC2 developed a tool called “KENGINE” that implements the concepts
described here. KENGINE manages vulnerability handling decision models, includes
analysis parameters, values, decision rules, LAPTs, and vulnerability handling workflow.
KENGINE helps JPCERT/CC vulnerability analysts make more consistent and effective
vulnerability response decisions. KENGINE includes the ability to import data from
external sources, record facts, cross-reference inventory information with lists of systems
affected, decision making, decision recording, an interface to the task tracking workflow
system, and model development. KENGINE can also produce statistical reports, such as
vulnerability handling progress, handling workload, decision trends, decision review, and
deviations between actual actions and VRDA suggestions. JPCERT/CC plans to release
KENGINE to the public.

References
[CERT 06] CERT Coordination Center, CERT/CC Statistics 1988 – 2006,
<http://www.cert.org/stats/>

[NVD 06] National Vulnerability Database, National Vulnerability Database Statistics,
<http://nvd.nist.gov/statistics.cfm>

[VULDEF] Terada, Masato, VULDEF: Security Advisory Publication Format Data
Model, <http://jvnrss.ise.chuo-u.ac.jp/jtg/vuldef/index.en.html>

2 Japan Computer Emergency Response Team Coordination Center

