
setting up the virtual machine
Install Virtual Box (or VMWare Workstation should work as well)

Go to File, Import Appliance, and point the wizard at the .ova file
(you can copy the file locally first if you want).

login with learnsoquery/learnsoquery, or

After install and start, you can access your virtual box locally via ssh

ssh -p 2222 learnosquery@127.0.0.1

Catching Up with
osquery

A Talk & Workshop
Doug Wilson – Director of Security, Uptycs

Hi, I'm Doug

~20 years doing "security"
FIRST Speaker 2013, 2014, 2015
Ex-Mandiant, FireEye

��
�����	��

Today's Workshop on osquery
Talk turned into interactive workshop

Introduce people to what osquery can do
Give a "state the art" about the project and how to get involved

Designed for folks with no or moderate experience with osquery
Focused on local use of osquery, but happy to take questions on
distributed osquery later or after
If you have played with osquery before, the basic SQL may be "known"
but there may still be tips and tricks that are new

Why osquery?
Open-source endpoint
Originally developed at Facebook
Ask Questions and Get Answers!
Turns system calls into virtual SQL tables

(Structured Query Language)

Universal Endpoint
Cross-platform
Cross-virtualization (level)
Cross-maturity

Design Principles of osquery
Read Only

Only modifies files needed to run
Polite & respectful of privacy

Developer choice of tables/content
Non-intrusive

user mode, controls impact on machine

Universal language of SQL
Tries to be consistent across all OS

(when possible)

Abstract the Operating Systems to SQL
ps -ef | grep apached

or
ps -C apached

or
ps ax | grep apache

But if you standardize on SQL

Select * from processes where name like ‘%apache%’

acpi_tables

ad_config

alf

alf_exceptions

alf_explicit_auths

alf_services

app_schemes

apps

apt_sources

arp_cache

asl

augeas

authorization_mechanisms

authorizations

authorized_keys

block_devices

browser_plugins

carbon_black_info

carves

certificates

chrome_extensions

cpu_time

cpuid

crashes

crontab

curl

curl_certificate

device_file

device_firmware

device_hash

device_partitions

disk_encryption

disk_events

dns_resolvers

docker_container_labels

docker_container_mounts

docker_container_networks

docker_container_ports

docker_container_processes

docker_container_stats

docker_containers

docker_image_labels

docker_images

docker_info

docker_network_labels

docker_networks

docker_version

docker_volume_labels

docker_volumes

etc_hosts

etc_protocols

etc_services

event_taps

extended_attributes

fan_speed_sensors

file

file_events

firefox_addons

gatekeeper

gatekeeper_approved_apps

groups

hardware_events

hash

homebrew_packages

interface_addresses

interface_details

iokit_devicetree

iokit_registry

kernel_extensions

kernel_info

kernel_panics

keychain_acls

keychain_items

known_hosts

last

launchd

launchd_overrides

listening_ports

lldp_neighbors

load_average

logged_in_users

magic

managed_policies

mounts

nfs_shares

nvram

opera_extensions

os_version

osquery_events

osquery_extensions

osquery_flags

osquery_info

osquery_packs

osquery_registry

osquery_schedule

package_bom

package_install_history

package_receipts

pci_devices

platform_info

plist

power_sensors

preferences

process_envs

process_events

process_memory_map

process_open_files

process_open_sockets

processes

prometheus_metrics

python_packages

quicklook_cache

routes

safari_extensions

sandboxes

shared_folders

sharing_preferences

shell_history

signature

sip_config

smbios_tables

smc_keys

startup_items

sudoers

suid_bin

system_controls

system_info

temperature_sensors

time

time_machine_backups

time_machine_destinations

uptime

usb_devices

user_events

user_groups

user_interaction_events

user_ssh_keys

users

virtual_memory_info

wifi_networks

wifi_status

wifi_survey

xprotect_entries

xprotect_meta

xprotect_reports

yara

yara_events

Universal vs. OS Specific
Osquery was developed on *nix systems

Reverse problem of a lot of security software
Ported to Windows later on
Tries to be universal, but there are specific idiosyncrasies structures of different
OS that make this hard

macOS and Windows have the most OS specific tables
Windows is structured differently, period
macOS has a lot of customized features that are not standard *nix
More “custom” work has gone into tables for Windows & macOS

Overview of Tables in osquery
System Utilities vs. SQL
Over 200 tables

Special Tables

osquery_ tables
Events and _event tables
Add-on Utilities

Augeas, Prometheus, Docker, Extensions and more!

Osquery Files
Binaries: /usr/bin/

osqueryi
osqueryd

Config: /etc/osquery/
osquery.conf
osquery.flags

Database /var/osquery/
osquery.db

Logs /var/log/osquery
osquery.INFO

In depth config docs: https://osquery.readthedocs.io/en/stable/deployment/configuration/

Osquery Flags
There are a LOT of flags – too many to cover here*

osquery> select count(*) from osquery_flags;
count(*) = 169

--verbose & --config-check
debugging

--config_path & --flagfile
configuration

--disable_events
event listeners

* https://github.com/facebook/osquery/blob/master/docs/wiki/installation/cli-flags.md

Queries vs Query Packs
you'll hear references to both queries and query packs

A query is a set SQL request to get a specific set of data:
select * from processes

A query pack is a group of queries designed to be distributed together.

We are not going to cover query packs in depth today. Think of them as a
batch of queries that can be distributed together.

Interactive Lab 1
Install, Launch, & Test

Let’s find osquery
Osquery is already on your VM at /var/tmp/osquery

Otherwise, best place to start is at https://osquery.io/downloads/
If you want to fetch it, it would look like this:

wget https://pkg.osquery.io/deb/osquery_3.2.6_1.linux.amd64.deb

shasum –a 256 osquery_3.2.6_1.linux.amd64.deb

Your result should be 3627e6931c97a27439b33147a7ae1496027be789

If you don’t get the right checksum, try again, or just use the local copy

https://osquery.io/downloads/

Install & Verify
To install

sudo dpkg -i /var/tmp/osquery_3.2.6_1.linux.amd64.deb

To verify

$ osqueryi <enter>
osquery>
osquery> select * from uptime; <enter>

Shockingly Easy (hopefully)
So, that took what, 2 minutes?

Very easy to get osquery deployed on a host

Works with almost all Package Managers

Used to be a bit trickier on Windows

Likely need to do code signing if you “roll your own.”

Interactive Lab 2
Shell & Simple SQL

osquery Shell Commands
If you’re not still in osquery, go ahead and type osqueryi again.

Type .help at the osquery> prompt to see some of the osquery shell
commands.

Some osquery Shell Commands
.exit / .quit - gets you out of the shell
.show & .features – show you some of osquery’s settings in one place
.mode pretty – “default” view that shows SQL “tables”
.mode line – different view that shows one result per line
.tables $search – lists (some) tables currently available in osquery
.schema $table -- shows you the build statement for a table

SQLite Syntax
osquery uses SQLite* as its SQL interpreter

only SELECT statements

Read Only (in osquery core, at least)

a few functions don’t work, most do

* https://www.sqlite.org/lang.html

Simple Queries
select * from <table_name>;

osquery> select * from uptime; ß protip: the semicolon

osquery> select
...> *
...> from
...> uptime
...> ;

Why Run osquery with sudo?
Try this:

osqueryi> select * from shadow;

What results do you get?

Now do .exit, and try it again running osqueryi with sudo:

$ sudo osqueryi

What is different? Why?

SQL - Simple Queries
select * from users;

select * from users limit 5;

protip: (use limit 1 or .schema users to get column names)

select count(*) from users;

select uid, gid, username, description, directory
from users limit 5;

SQL – ORDER BY
Let's take what we have here and "sort" the results
select uid, gid, username, description, directory
from users limit 5;

select uid, gid, username, description, directory
from users order by uid asc limit 5; ß Protip – before LIMIT

How would you do this by username? Why was it not by uid in the first
place?

SQL - WHERE and LIKE
If you want to get data from a specific row, you can get ones that match
data by using WHERE (protip – quotes!)

select uid, gid, username, description, directory
from users where username='systemd-timesync';

This gets you the one specific row. However, what if you want all the
“systemd” accounts?

SQL - WHERE and LIKE
You can use the LIKE operator and wildcards before or after a string to
find partial matches

select uid, gid, username, description, directory
from users where username like 'system%';

Can you figure out how to get the same results using the directory
column?

SQL - JOINing Table Data
Take a look at the users table, and the processes table

Processes table is very "noisy" – try just a few columns

select * from processes limit 1;
select pid, name, cmdline from processes limit 5;

You may want to see what the name of a user is for a given process.

What columns do the users and processes table have in common?

SQL - JOINing Table Data
Both tables have a "uid" column for the user ID number

Let's take the process data we need with user id, and then map the
corresponding user name from the users table.

select p.pid, p.name, u.uid, u.username
from processes p
join users u on u.uid=p.uid;

“consider JOINing against the users table”
select * from shell_history;

W0617 21:41:10.583434 1534 virtual_table.cpp:557]
The shell_history table returns data based on the
current user by default, consider JOINing against
the users table

select * from shell_history WHERE shell_history.uid
IN (SELECT uid from users);

Tables that Require "join against users:"
account_policy_data
authorized_keys
browser_plugins
chrome_extensions
firefox_addons
known_hosts
opera_extensions
safari_extensions
shell_history

Date Functions
osquery> .mode line

select local_time from time;

> local_time = 1529608143 <-- in unix epoch time

select datetime(local_time, 'unixepoch', 'localtime') as
formatted_time from time;

> formatted_time = 2018-06-21 15:09:09

* https://www.sqlite.org/lang_datefunc.html

Math
osquery> select path, type, blocks_available, blocks_size from
mounts where path = '/';

path = /
type = ext4
blocks_available = 22653804
blocks_size = 4096

osquery> select path, type, round((blocks_available * blocks_size
*10e-10),2) as gigs_free from mounts where path='/';

path = /
type = ext4
gigs_free = 92.79

Back to Presentation

Special Tables
osquery_
_events

Augeas
Prometheus
Docker
ATC

Special Tables - osquery_
tables that start with "osquery_" are diagnostic tables for osquery

osquery_
events – shows current event publishers and subscribers
extensions – show registered extensions
flags – show all recognized flags, and current status
info – status of current installation
packs – shows any registered query packs
registry – summary of components registered with osquery
schedule – scheduled queries from config & query packs

Special Tables - _events
_events tables do not work like “normal tables”

select * from processes;
Show you all processes at a given point in time
Query later, shows you the delta between point 1 in time and point 2

select * from process_events;
Saves up events after first query at point 1 in time
Query at point 2 in time gets _ALL_ events since point 1, unless buffer has been
overwritten

Special Tables - _events
_events tables use a pub/sub model
There are a few different event publishers per OS
There are standardized listeners in osquery

NOT consistent across all OS yet, unfortunately
Windows is specifically lacking consistency with others

* Catching Everything with osquery Events
https://www.youtube.com/watch?v=yFfWv9wAhyA

Special Tables – Augeas*
Augeas – a separate open-source project*
Reads configuration files into key-value pairs
Used by osquery to make *nix config files parse-able by osquery
without having to write a unique table for each one
Lenses

What comes with osquery
Rolling your own
This is also an open-source project – contribute back!

* http://augeas.net/

Special Tables – Prometheus*
Osquery is not that great for performance metrics
Prometheus is an open source metrics collection & publishing project
Prometheus has a LOT of metrics it returns
With the Prometheus table, you can query a Prometheus API and get
results inside of osquery

* https://prometheus.io/

Special Tables – Docker*
Contributed by Uptycs in May of 2017 – docker_ tables
Converts Docker API calls into osquery tables

Allows a lot (but not all) of the information from inside a running docker
container to be read in the parent container (check terminology)
There are some gaps
There are some areas from improvement
But much simpler than previous options, and allowed osquery to be a viable
solution for Dockerized environments without running osquery in each
container

* https://www.docker.com/

Special Tables – Auto Table Construction*
Contributed by Facebook in April of 2018
Allows you to take a SQLite database that is sitting on disk, and
dynamically turn it into a table in osquery without having to write code
for each instance
REALLY useful on macOS, where the OS uses a bunch of these for
various different configuration options
Needs to be created in config file

* https://github.com/facebook/osquery/pull/4271

Extensions
Extensions are code that runs alongside osquery, but is not a part of
the osquery code
Can be written in Python or Go (and possibly other languages)
Extensions can do all sorts of things – including things that violate
osquery design principles

Extensions can read things that are not in osquery core tables
Extensions can now _WRITE_ to the endpoint, changing configurations
Extensions can allow for the capture of additional forensic data

Files, Monitoring, "Carving" and Compliance
osquery provides several different ways to get information about files

ALL are path-specific!

The file table give information about a file when you do the query

The file_events table gives you information about changes to specific
files and file paths

The carves table gives you the ability to carve files from an operating
system (but not trivial)

Interactive Lab 3
Viewing Events in

osqueryi

osquery_events Table
sudo osqueryi
osquery> select * from osquery_events

Try to see the entire table – currently all zeros.

Events are turned on/off through config & flags.
Base osqueryi sees none of them

Configuring osqueryi to See Events
For this we need to use flags:

--disable_events is default set to "true" – needs to be "false"

--disable_audit & --audit_allow_config need to be set

The latter two are in the config file. But the first is not.

Launching osqueryi to See Events
We need to feed osqueryi the flags settings.
Run osqueryi as follows (all on one line):

sudo osqueryi --disable_events=false
--config_path=/etc/osquery/osquery.conf
--flagfile=/etc/osquery/osquery.flags

What flags are being sent via the flags file? What flags are being sent
via the command line?

Querying Events
now, take a look at osquery_events again

osquery> select * from osquery_events;

What is different?

Querying Events
let's refine the events we are looking at

select * from osquery_events where active=1;

What are we seeing here?

All publishers and subscribers are not equal.

file_events and yara_events require additional config.

File Events & FIM
open a new shell, your choice

navigate to /etc/osquery and examine the osquery.conf file

$ less /etc/osquery/osquery.conf

find the "file_paths" section

This is where File Event / File Integrity Monitoring (FIM) is configured

File Events & FIM
"file_paths": {
"monitor_this": [
"/var/tmp/filetest/%%"

]
}

JSON snippet – specifies a label and a file path.
The file path can include % or %% wildcards.
They do NOT always work the way you expect*.

* https://www.uptycs.com/blog/wildcards-and-globbing-in-osquery

File Events & FIM
"file_paths": {

"monitor_this": [
"/var/tmp/filetest/%%"

]
}

This will monitor any file changes underneath the "filetest" directory

cd to the /var/tmp/filetest directory
but do NOT do anything there yet.

Let's Create Some Events
in the osquery terminal, look at osquery_events

you may see some process events already

osqueryi> select * from file events
should still return nothing, though

go to your filetest directory, and create or "touch" a few files.

Let's Create Some Events
in the osquery terminal, look at osquery_events again

you should now see some file events as well.

osqueryi> select * from file events
will return events now. What do you see about them?

Feel free to create (or delete!) a few more files. What do you see?
How many events are there per action that you take?

Let's Create Some (user) Events
looking at osquery_events you should file and process events

Let's generate some user events.
These often involve authentication (or lack there of).
Go back to your file window.

Type
passwd

and then just hit <enter> again. Don't actually change your password.

Let's Create Some (user) Events
Then type

sudo fileblah.txt
And then at the prompts, don’t actually put in your password. Just hit enter,
and wait for the timeouts to finish.

Go back to the osquery window, and look at user_events

What do you see?

If you see events from cron – can you filter them out so you only see your
user events? What are some different ways you could do that?

Bonus Question
when querying user_events, can you also figure out how to display
the user name?

can you do this and edit out "cron" jobs at the same time?

Bonus Question
when querying user_events, can you also figure out how to display the user
name?

select u.username, ue.pid, ue.message, ue.path,
ue.terminal, ue.time from user_events ue join users
u on ue.uid=u.uid;

select u.username, ue.pid, ue.message, ue.path,
ue.terminal, ue.time from user_events ue join users
u on ue.uid=u.uid where ue.path!='/usr/sbin/cron';

Thus Endeth the Lab for Now

Back to the Presentation

osquery
project status
and overview

osquery – Project Status and Overview
Project status and who's using osquery now

Current pain points and roadmap items

Improvements in the past year

What to expect in the next year

How to get involved

Osquery – Current Project Status
Can osquery become the “Apache for Endpoint?”

One of the top open-source projects for security (as per github)

Immense growth & activity

Adoption in “early adopter” as well as some more conservative ones

Who’s Using osquery Now?
DIY community

Adoption in Silicon Valley
Facebook (obviously)

Airbnb, Apple, Etsy, Google, Netflix,
Uber, Stripe and many more . . .

Large scale IT companies

Large financial institutions

Even Security Companies
(shout out to Carbon Black)

Current Pain Points and Roadmap Items
Needs “better” QA and reliability
Doesn’t have full functionality in hosted container environments
Doesn’t have great performance counters
Lacking “full” documentation and FAQs
Lacking full “events” for Windows

Current Pain Points and Roadmap Items
Needs “better” QA and reliability
Doesn’t have full functionality in hosted container environments

Doesn’t have great performance counters
Lacking “full” documentation and FAQs
Lacking full “events” for Windows

Important Improvements in the Past Year
Support for hashes in SQLite (tables)
Windows Authenticode Support (table)
Standardized JSON output (overall)
Support for Docker API (tables)
ATC Tables (table)
Dedicated team at Facebook working on performance (overall)

What to Expect in the Next Year w/ osquery
“Write” extensions* ßHUGE
Forensic data support for NTFS file systems*
Integration with Google Santa*
Improved container support (Kubernetes & hosted containers)
Event triggered Response Actions (still to be defined)
Proposed Improved Code Review Process
Likely integrate with EBPF (Extended Berkeley Packet Filter) on Linux

* - These are already written, just not adopted fully yet

How You can Join and Contribute
Download a binary and try it out - https://osquery.io/downloads/
Download or clone from Github - https://github.com/facebook/osquery/
Join the osquery slack - https://osquery-slack.herokuapp.com/
Follow @osquery and contributors on Twitter

Facebook has designated some “starter” items for less experienced coders
Contribute an IOC for malware
Help improve documentation
Write a blog post about solving a problem w/ osquery and share it

The Challenge of
osquery at Scale

Osquery at Scale – the Challenges
osquery is really cool

but there's a lot more to deploying it a scale beyond the open-source
project

You have to create an ecosystem, with osquery as the endpoint

Osquery at Scale – General Architecture

Stitching Components Together
Endpoints

Chef
Puppet
Munki
<many more>

Management

Zentral
Kolide Fleet
Doorman
Okta SGT

Data Bus

Logstash
Kafka
<several more>

Data Storage

Elastic Search
Postgres
<several more>

And you need to get the data back out
In most cases, you still have to be able to query the data store as well.

If you have a classic ELK stack, you use Kibana.

Wide variety of other choices for how to query and present the data.

Data over time
If you gather enough data over time using osquery, you can recreate
most of the state of a machine at different points in time.

Your data store and retrieval method has to take this into account.

Very useful for investigations and timelines.

However, with the same tool you can go back and query in real time.

osquery at Scale Summary
you need to configure and deploy the following

Endpoint Configuration

osquery Management & TLS or logging server

Data Pipeline(s)

Data Store(s)

UI & Retrieval System

Timelining System

Classic "Open-Source" time vs. resources trade-off

so, What Have We
Learned?

In summary: osquery . . .
Is a universal, open-source endpoint agent that originated at Facebook.
Aims to be read-only, "polite," to users, and non-intrusive to the host.
Is easy to install and start using, though requires additional work at scale.
Uses SQLite syntax for formatting queries, and has over 200 tables to format
information from endpoints.
Can gather data about a point in time, collect series of events, and leverage
third party tools and extensions.
Provides the ability to gather information over time as well as ask questions
in real time in the same tool.

Time Check (yes)
Bonus Lab (maybe)

Thanks for coming!
Doug Wilson
dwilson@uptycs.com
@dallendoug

https://osquery.io
https://osquery-slack.herokuapp.com

https://www.uptycs.com
https://www.uptycs.com/blog
@uptycs
https://medium.com/Uptycs

mailto:dwilson@uptycs.com
https://osquery.io/
https://osquery-slack.herokuapp.com/
https://www.uptycs.com/
https://www.uptycs.com/blog
https://medium.com/Uptycs

Interactive Lab 4
Augeas and

Prometheus

Augeas
Augeas can load configuration files into key value pairs

Does this through the augeas table
The query MUST have a path to a config file to work efficiently

select * from augeas where path='/etc/sudoers';

Augeas
select label, value from augeas where
path='/etc/sudoers' and label not like '%comment%';

select label, value from augeas where
path='/etc/ssh/sshd_config' and label not like
'%comment%';

/etc/crontab – compare to 'select * from crontab'
/etc/hosts – compare to 'select * from hosts'

Prometheus
Prometheus is an open-source monitoring solution

Prometheus exports counters and publishes them to a local API endpoint
on a small server it runs.
You can query this API in a table built into osquery.

Let's start up the services

sudo systemctl start prometheus
sudo systemctl start node_exporter

Prometheus
Prometheus initially just reports on its own Go application.

Node Exporter is a Prometheus module that gathers a large variety of metrics from the
computer in question and publishes them into Prometheus.

Prometheus publishes to

http://localhost:9100/metrics
http://localhost:9090/metrics

You can see the entries telling osquery about this in the /etc/osquery/osquery.conf
file.

Prometheus
let's try to take a look at prometheus in osquery.

Prometheus can be _very_ noisy

select * from prometheus_metrics limit 10;

This is where LIKE statements will come in handy

Prometheus
First you see statistics on the actual Go application.
Let's look for things from the node_exporter and limit columns

select metric_name, metric_value from
prometheus_metrics where metric_name like
'node_cpu%';

Try node_disk, node_filesystem, node_memory, node_netstat,
node_network to see some of the other sets of info available.

Augeas and Prometheus – and much more
Augeas was one way of extending osquery to read config files

Prometheus is another – for metrics

There is also the curl table for hitting any specific endpoint (kind of
what Prometheus does, but not purpose built)

Extensions can do almost anything you can dream up

Thanks for coming!
Doug Wilson
dwilson@uptycs.com
@dallendoug

https://osquery.io
https://osquery-slack.herokuapp.com

https://www.uptycs.com
https://www.uptycs.com/blog
@uptycs
https://medium.com/Uptycs

mailto:dwilson@uptycs.com
https://osquery.io/
https://osquery-slack.herokuapp.com/
https://www.uptycs.com/
https://www.uptycs.com/blog
https://medium.com/Uptycs

