
CERRID #######
PAGE 1

1

TLP:CLEAR

CERRID #######

1
1

TLP:CLEAR

Supercharge your Malware Analysis 
Workflow with Assemblyline



CERRID #######
PAGE 2

2

TLP:CLEAR

• Steve Garon – Team Leader

• Kevin Hardy-Cooper – Dynamic Analysis 

• Ryan Samaroo – Core Infrastructure

• Gabriel Desmarais – Services

• Marc-Olivier Guilbault – Dynamic Analysis

The A(ssemblyline)-Team

 @   assemblyline@cyber.gc.ca
        discord.gg/GUAy9wErNu



CERRID #######
PAGE 3

3

TLP:CLEAR

CERRID #######
PAGE 3

TLP:CLEAR

3

Syllabus
• A Little Bit of History
• Design and Architecture
• What deployment works for you?
• User Interface Showcase

Coffee Break

• Assemblyline API Walkthrough
Lunch

• The different parts of a service
• Service Creation 

Coffee Break
• Service Creation (Wrap up)

• Scale your deployment
• Future Work

20 min (9:30 – 9:50)

1h (9:50 – 10:50)

1h 20min (11:20 – 12:40)

1h (14:20 – 15:20)

1h (15:50 – 16:50)

20min (16:50 – 17:10)

20min (14:00 – 14:20)



CERRID #######
PAGE 4

4

TLP:CLEAR

CERRID #######
PAGE 4

4

TLP:CLEAR

A Little Bit of History



CERRID #######
PAGE 5

5

TLP:CLEAR

… Back in the days

Daily Stats:
• ~ 10 files received 
• ~ 5 Unique
• ~ Between 0 – 5 analysed

Small team of 3 
Reverse Engineers



CERRID #######
PAGE 6

6

TLP:CLEAR

Source: https://xkcd.com/1319/



CERRID #######
PAGE 7

7

TLP:CLEAR

Surely we can do more? 
Detect and respond to all malware targeting

the Government of Canada



CERRID #######
PAGE 8

8

TLP:CLEAR

CERRID #######
PAGE 8

TLP:CLEAR

8

From a handful of files to millions
* just wave your magic scale wand * 

 Source: http://gunshowcomic.com/648



CERRID #######
PAGE 9

9

TLP:CLEAR

CERRID #######
PAGE 9

TLP:CLEAR

9

The Foundation for the Future – Assemblyline 3

• Distributed analysis platform 
• Aggressive deduplication
• Alerting system with automated 

workflows
• Scalable
• Open source since Oct 2017

• About 2M files scanned daily
• Between 3K -150K alerts
• About 4500 files per minute 

during peak times
• Can only keep a week of data



CERRID #######
PAGE 10

10

TLP:CLEAR

Let’s start over but do it right this time…



CERRID #######
PAGE 11

11

TLP:CLEAR



CERRID #######
PAGE 12

12

TLP:CLEAR

CERRID #######
PAGE 12

TLP:CLEAR

12

Now we’re talking!

• No more backlogs
• 3.5M+ files after deduplication
• Up to 15K+ files per minute during peak times 
• Currently keeping 2 months of data 

• 4.7 TB / 1.8 billion docs – Elastic index
• Icing on the cake: Not a single DB crash in the past 2 years!

• Kudos to Elastic!



CERRID #######
PAGE 13

13

TLP:CLEAR

CERRID #######
PAGE 13

TLP:CLEAR

13

Ok stop stalling, how does this work?

EDR

Import your ruleset! External systems

Antivirus
Sandboxes

Security products

Alerts

Indicators of 
compromise

Automatic tasking 
via Webhook / API

- 50+ different services
- Generates score, heuristics, tags
- Recursively analyzes embedded 

elements

Gateways

Email

Analyst / IR / FORENSIC



CERRID #######
PAGE 14

14

TLP:CLEAR

CERRID #######
PAGE 14

TLP:CLEAR

14

Who is it for? 

• Government Provincial / Federal
• Corporate Organizations
• CERTs
• Malware research labs
• Academia
• InfoSec community

NOT recommended for personal use or to replace any desktop AV...



CERRID #######
PAGE 15

15

TLP:CLEAR

CERRID #######
PAGE 15

15

TLP:CLEAR

Design and Architecture



CERRID #######
PAGE 16

16

TLP:CLEAR

CERRID #######
PAGE 16

TLP:CLEAR

16

Core Components
• Ingester

• High volume ingestion component
• Dispatcher

• Core tasking component
• Scaler 

• Service load balancer component
• Updater

• Service updater component



CERRID #######
PAGE 17

17

TLP:CLEAR

CERRID #######
PAGE 17

TLP:CLEAR

17

Core Components (continued…)
• Service Server

• Separate the services from the core components
• Expiry

• Removes expired data/files based on TTL (Time To Live)
• Alerter

• Creates alerts using all the information about the submission when 
requirements are met

• Workflow
• Auto label, prioritise and set status on alerts 



CERRID #######
PAGE 18

18

TLP:CLEAR

CERRID #######
PAGE 18

TLP:CLEAR

18

UI Components
• API Server

• Hosts the different API endpoints and makes sure access control is respected
• Socket Server

• Hosts the WebSocket endpoints 
• Frontend 

• Hosts all static JavaScript, HTML and image files used in the UI



CERRID #######
PAGE 19

19

TLP:CLEAR

CERRID #######
PAGE 19

19

TLP:CLEAR

Creating your deployment



CERRID #######
PAGE 20

20

TLP:CLEAR

• How many files a setup can process depends on:
• Size of files

• Types of files

• Types of analysis services

• Number of services that you will be running

• The quantity of resources those services use
• We can only offer very rough ideas

Choosing the right deployment type



CERRID #######
PAGE 21

21

TLP:CLEAR

• Auto-scalable 12-72 nodes cluster (16 cores/64 GB per node)
• Up to 3.5M+ unique submissions a day (Avg. 1.5M)
• Lots of downtime during the night
• Rarely uses the full node capacity
• Mixed file types, mix of static and dynamic analysis.

Our current biggest deployment



CERRID #######
PAGE 22

22

TLP:CLEAR

• Throughput: A couple at a time
• Only includes components that play nice with virtualization
• Easy to set up
• Wants its own operating system

• Needs a VM, not a container

• Like the name says, this is for development, nothing else
• Minimum resources: 2 cores / 6GB of ram 

Development VM using an IDE

Core 
Services

Dependencies

Services

Desktop / Server

VM

* https://cybercentrecanada.github.io/assemblyline4_docs/developer_manual/env/vscode/setup_script/



CERRID #######
PAGE 23

23

TLP:CLEAR

• Small throughput 
• Few hundred per minute 
• Fairly easy to set up
• Can be installed on a server or a VM
• Everything on the same box
• Not recommended to use with logging stack since 

everything is on the same box

Appliance (docker compose)

Core

Dependencies

Services

Server / VM

Logging Stack

* https://cybercentrecanada.github.io/assemblyline4_docs/installation/appliance/docker/



CERRID #######
PAGE 24

24

TLP:CLEAR

• High Throughput
• Up to tens of thousand files per minute

• Auto-scaling of all major components
• Services
• API endpoints
• Core components

• Even number of nodes (VMs) auto-scales if deployed in 
supported environment (cloud)

• Logging stack recommended to keep track of the logs
• Cost a lot more, harder to setup

Cluster (Kubernetes)

Core

Dependencies

Services

Kubernetes Cluster

Logging Stack

* https://cybercentrecanada.github.io/assemblyline4_docs/installation/cluster/general/

N x

N x

N x

+



CERRID #######
PAGE 25

25

TLP:CLEAR

CERRID #######
PAGE 25

25

TLP:CLEAR

Using Assemblyline
Discover Assemblyline’s User Interface



CERRID #######
PAGE 26

26

TLP:CLEAR

CERRID #######
PAGE 26

26

TLP:CLEAR

Live demo!



CERRID #######
PAGE 27

27

TLP:CLEAR

CERRID #######
PAGE 27

27

TLP:CLEAR

Automate all the things!
An introduction to the Assemblyline API



CERRID #######
PAGE 28

28

TLP:CLEAR

• https://ec2-3-98-100-58.ca-central-1.compute.amazonaws.com

• Credentials
• Username: first
• Password: f1r$tD3m0p@ssw0rd!

We have a test deployment ready for you…



CERRID #######
PAGE 29

29

TLP:CLEAR

• Assemblyline uses REST APIs for system interaction
• RBAC
• Various means of authentication (Basic, API keys, OBO)

• Our APIs also perform data management/administration 
automatically

Introduction to Assemblyline API



CERRID #######
PAGE 30

30

TLP:CLEAR

So... WHAT can we use to communicate with the API?
• Common methods of API interaction are, but not limited to:

• Assemblyline Client (Python/Java)
• Assemblyline Client from the CMD (Python/Java)
• CURL
• HTTP library in any programming language



CERRID #######
PAGE 31

31

TLP:CLEAR

So... HOW do we use the API?
• The API is fully documented and available on your instance 

at: /help/api

• Extended documentation available at:
https://cybercentrecanada.github.io/assemblyline4_docs/integration/ingestion_method/



CERRID #######
PAGE 32

32

TLP:CLEAR

• The API client is available in Python and Java
• https://pypi.org/project/assemblyline-client/
• https://github.com/CybercentreCanada/assemblyline-java-client

• Here is how to initialize it in Python: 

Assemblyline Client

from assemblyline_client import get_client

# Connect/Authenticate with Assemblyline deployment
PORT = '443'
HOST = "localhost"
client = get_client(f'https://{HOST}:{PORT}', auth=('admin', 'admin'), verify=False)



CERRID #######
PAGE 33

33

TLP:CLEAR

• Search API:
• Search for data that might belong to certain indices/buckets (files, results, 

signatures) with optional filtering criteria

Searching for Data



CERRID #######
PAGE 34

34

TLP:CLEAR

• Full Submission Results

• Submission Summary

Submission Full & Summary Report (without Ontology)



CERRID #######
PAGE 35

35

TLP:CLEAR

Submission report (with Ontology)
For machine-to-machine parsing, we recommend the use of the Ontology APIs

See further documentation:
https://cybercentrecanada.github.io/assemblyline4_docs/odm/models/ontology/ontology/



CERRID #######
PAGE 36

36

TLP:CLEAR

Submission methods
Asynchronous (/api/v4/ingest/) Synchronous (/api/v4/submit/)

• Supports large volumes of files for processing

• Not subjected to quota limits

• Alerting functionality is used

• Performance optimizations with submission-level 
caching

• Instant scanning (given highest priority to skip the 
queue)

• Analysis guaranteed (no data sampling)

• Metadata searchable for all submissions

• Ingestions may be queued for an extended time or 
sampled based on system busyness

• Metadata associated to ingestions aren’t indexed 
because there is no submission entry created

• Not suitable for large volumes of files

• Subjected to quota limits depending on user 
(Default: 5 concurrent submissions)

• Alerting not available

• No submission-level caching



CERRID #######
PAGE 37

37

TLP:CLEAR

• Search it! 
And more...



CERRID #######
PAGE 38

38

TLP:CLEAR

CERRID #######
PAGE 38

38

TLP:CLEAR

Coding time!



CERRID #######
PAGE 39

39

TLP:CLEAR

• Use the API key, otherwise library needs to handle session cookies 
and XSRF tokens

• Most Assemblyline APIs are expecting to receive and return JSON**
• Accept header "application/json"
• Content-type header "application/json“

• All Assemblyline APIs end with trailing forward slash "/"
• Headers to authenticate are “X-USER" and “X-APIKEY"

** There are also other APIs where multipart/form-data is used (ie. Ingest)

Important Information RE: Rest API



CERRID #######
PAGE 40

40

TLP:CLEAR

Exercise 1: Collecting Network IOCs
Scenario: 
“I want to collect all the network-related IOCs that Assemblyline was able 

to extract and store them in a dictionary/mapping.

For my use-case, I would also want to sort them based on the type of 
network IOC (ie. domain, IP, URL)”

Expected Result:
  {

    “network.static.ip”: [“172.0.0.1”, ...]
    “network.static.domain”: [“www.google.com”, ...]
    ...
}



CERRID #######
PAGE 41

41

TLP:CLEAR

Exercise 1: Pull Network IOCs from submission

Web APIs Involved:
GET /api/v4/submission/summary/<sid>/
GET /api/v4/ontology/submission/<sid>/

Python APIs Involved:
Client.submission.summary(<sid>)
Client.ontology.submission(<sid>)

SID: 1nAXRc365frBiSXKg0qX0Q



CERRID #######
PAGE 42

42

TLP:CLEAR

Exercise 1: Pull Network IOCs from submission

● Option 1 (using Submission API)
# Option 1: Get IOCs for the submission summary API
# client.submission.summary --> /api/v4/submission/summary/sid/
for tag_name, tag_values in 
client.submission.summary(SID)['tags']['ioc'].items():
    for tag_value, tag_verdict, is_tag_safelisted, classification in tag_values:
        # Check if verdict is indeed malicious
        if tag_name.startswith('network'):
            # Create the tag category if does not exist
            COLLECTED_IOCS.setdefault(tag_name, [])

            # Add the IOC to our list of collected IOCs
            COLLECTED_IOCS[tag_name].append(tag_value)

● Option 2 (using Ontology API)
# Option 2: Get IOCs from the ontology API
# client.ontology.submission --> /api/v4/ontology/submission/sid/
for record in client.ontology.submission(SID):
    for tag_name, tag_values in record['results']['tags'].items():
        if tag_name.startswith('network'):
            # Create the tag category if does not exist
            COLLECTED_IOCS.setdefault(tag_name, [])

            # Add the IOC to our list of collected IOCs
            COLLECTED_IOCS[tag_name].extend(tag_values)



CERRID #######
PAGE 43

43

TLP:CLEAR

Exercise 1: Client vs Native Requests

Assemblyline Client
# Option 1: Get IOCs for the submission summary API
# client.submission.summary --> /api/v4/submission/summary/sid/
for tag_name, tag_values in client.submission.summary(SID)['tags']['ioc'].items():
    for tag_value, tag_verdict, is_tag_safelisted, classification in tag_values:
        # Check if verdict is indeed malicious
        if tag_name.startswith('network'):
            # Create the tag category if does not exist
            COLLECTED_IOCS.setdefault(tag_name, [])

            # Add the IOC to our list of collected IOCs
            COLLECTED_IOCS[tag_name].append(tag_value)

Python Requests

data = requests.get(f"{host}/api/v4/submission/summary/{SID}/", headers=headers, verify=False).content
summary = json.loads(data)["api_response"]
for tag_name, tag_values in summary["tags"]["ioc"].items():
    for tag_value, tag_verdict, is_tag_safelisted, classification in tag_values:
        # Check if verdict is indeed malicious
        if tag_name.startswith('network'):
            # Create the tag category if does not exist
            COLLECTED_IOCS.setdefault(tag_name, [])

            # Add the IOC to our list of collected IOCs
            COLLECTED_IOCS[tag_name].append(tag_value)



CERRID #######
PAGE 44

44

TLP:CLEAR

Exercise 2: Performing Filtered File Collection
Scenario: 
“I want to collect all files with a very high score in Assemblyline 

(score ≥ 7000). 

I would like to also store these files on my AV-protected host 
so I can feed it to another process.”



CERRID #######
PAGE 45

45

TLP:CLEAR

APIs Involved:
GET /api/v4/search/<index>/
GET /api/v4/submission/full/<sid>/
GET /api/v4/file/download/<sha256>/

Python APIs Involved:
Client.search.stream.<index>()
Client.submission.full(<sid>)
Client.file.download(<sha256>)

Exercise 2: Download file(s) with a certain score



CERRID #######
PAGE 46

46

TLP:CLEAR

Exercise 2: Download file(s) with a certain score

# For all submissions that are over the file score threshold
# client.search.stream.submission --> /api/v4/search/submission/?deep_paging_id=*
for record in client.search.stream.submission(query=f"max_score:>={FILE_SCORE_THRESHOLD}", fl='sid'):
    sid = record['sid']

    # Download the full submission result and compute the score for each file
    # client.submission.full --> /api/v4/submission/full/sid/
    submission_results = client.submission.full(sid)

    # Compute the score of each files in the submission
    files_scores = dict()
    for result in submission_results['results'].values():
        # Initialize the default score for the file if the file is not in the list
        files_scores.setdefault(result['sha256'], 0)

        # Add the score of the result record to the file
        files_scores[result['sha256']] += result['result']['score']

    # For each files where the score is greater than threshold, download in cARTed format
    # client.file.download --> /api/v4/file/download/sha256?encoding=cart/
    for sha256, score in files_scores.items():
        if score >= FILE_SCORE_THRESHOLD:
            client.file.download(sha256, encoding="cart", output=os.path.join(OUTPUT_DIRECTORY, f"{sha256}.cart"))



CERRID #######
PAGE 47

47

TLP:CLEAR

Scenario: 

“I want to be able to automate ingestion from a host-based 
sensor to submit files to Assemblyline and send the parsed 

results to a database for long-term use.”

• What are notification queues, and should I use them?

Exercise 3: Ingest files through Ingest API



CERRID #######
PAGE 48

48

TLP:CLEAR

Exercise 3: continued
Web APIs Involved:
POST /api/v4/ingest/
GET /api/v4/ingest/get_message_list/<notification_queue>/

Python APIs Involved:
Client.ingest()
Client.ingest.get_message_list(<notification_queue>)



CERRID #######
PAGE 49

49

TLP:CLEAR

Exercise 3: Solution

# SENDER
# Ingest all files to scan in Assemblyline
for file_path in files_to_scan:
    # That's it, just need to send all files in... the receiver will pull the results
    client.ingest(path=file_path, metadata={'file_path': file_path}, nq=NOTIFICATION_QUEUE_NAME)

# RECEIVER
# Receive completion messages from the notification queue
# client.ingest.get_message_list --> /api/v4/ingest/get_message_list/<NOTIFICATION_QUEUE_NAME>/
while len(files_to_scan) != 0:
    for result in client.ingest.get_message_list(NOTIFICATION_QUEUE_NAME):
        # This is the file we are receiveing result for
        current_file = result['submission']['metadata']['file_path']

        # For each completion message, pull the result record to get the score
        submission = client.submission(result['submission']['sid'])

        # Print file score to screen
        print(current_file, "=", submission['max_score'])

        # Stop waiting for the file
        files_to_scan.remove(current_file)

    # Otherwise wait for more messages until we're finished
    sleep(1)



CERRID #######
PAGE 50

50

TLP:CLEAR

Exercise 4: Alert monitoring and identify IOC for blocking
Let's say we want to action on IOCs that Assemblyline has alerted on

Web APIs Involved:
GET /api/v4/search/<index>/

Python APIs Involved:
Client.search.<index>

# Search through the alert index for alerts with IPs and Domains
# client.search.alert --> /api/v4/search/index/
for alert in client.search.alert('al.ip:* OR al.domain:* OR al.uri:*', fl="al.detailed.*")['items']:
    # Iterate over the IOCs in the alert
    for ioc_type in ['ip', 'domain', 'uri']:
        # Iterate through the different items to check if they should be blocked
        for ioc in alert['al']['detailed'][ioc_type]:
            # Make sure those IOCs are not safe or informational 
            if ioc['verdict'] in ['info', 'safe']:
                continue

            # Block suspicious and malicious IOCs (ie. add to FW rules) 
            block_IOC(ioc=ioc['value'], ioc_type=ioc_type, verdict=ioc['verdict'])



CERRID #######
PAGE 51

51

TLP:CLEAR

Scenario: 

“I can't use Assemblyline's Python/Java client to integrate with 
my existing tradecraft. What can I do?”

• Can I use cURL, Postman, or any other compiled application?

Exercise 5: What about custom tradecraft?



CERRID #######
PAGE 52

52

TLP:CLEAR

• Submit a file using the "Submit" transmission method using Raw 
HTTP/Curl

• Ingest a file using the "Ingest" transmission method using Raw 
HTTP/Curl

Exercise 5: CURL

client.submit → /api/v4/submit/

client.ingest → /api/v4/ingest/



CERRID #######
PAGE 53

53

TLP:CLEAR

CERRID #######
PAGE 53

53

TLP:CLEAR

How are services built? 
The different parts that compose a service



CERRID #######
PAGE 54

54

TLP:CLEAR

Creating new services
• Bare minimum:

• Python file with a ServiceBase class that implements the execute function
• service_manifest.yml
• Dockerfile*

• Service Manifest:
• name, version, description
• accepts, rejects (file types that you are interested into)
• file_required, timeout, stage, category
• config, submission_params
• heuristics
• docker_config, dependencies, update_config



CERRID #######
PAGE 55

55

TLP:CLEAR

ServiceBase class
• Overwritable functions

• __init__()
• _load_rules()
• start()
• execute(request: ServiceRequest)

• self.config
• service_manifest.yaml: config

• self.working_directory

• self.log.(debug|info|warning|error)



CERRID #######
PAGE 56

56

TLP:CLEAR

Execution – ServiceRequest object
• request.file_type, file_path, file_contents
• request.get_param()

• service_manifest.yaml: submission_params
• request.add_extracted()
• request.add_supplementary()

• ResultSection
● request.result = Result()



CERRID #######
PAGE 57

57

TLP:CLEAR

Result & ResultSections
• A Result contains ResultSections
• What can a ResultSection contain:

• Body of information, with associated format
• Classification
• Tags
• One Heuristic

• Score
• Signatures

• More score

� The score of the heuristic is applied to all content of the ResultSection



CERRID #######
PAGE 58

58

TLP:CLEAR

ResultSection - Text



CERRID #######
PAGE 59

59

TLP:CLEAR

ResultSection - KeyValue
• Can be sorted or ordered



CERRID #######
PAGE 60

60

TLP:CLEAR

ResultSection - Table
• Can be nested to a maximum of two deep



CERRID #######
PAGE 61

61

TLP:CLEAR

ResultSection - Image



CERRID #######
PAGE 62

62

TLP:CLEAR

ResultSection - JSON



CERRID #######
PAGE 63

63

TLP:CLEAR

ResultSection - MemoryDump



CERRID #######
PAGE 64

64

TLP:CLEAR

ResultSection - Graph



CERRID #######
PAGE 65

65

TLP:CLEAR

ResultSection - Process Tree
• Coloured based on the score of the process-associated signatures



CERRID #######
PAGE 66

66

TLP:CLEAR

ResultSection - Timeline



CERRID #######
PAGE 67

67

TLP:CLEAR

ResultSection - MultiSection



CERRID #######
PAGE 68

68

TLP:CLEAR

How to run it
• python -m assemblyline_v4_service.dev.run_service_once <your_service> <sample>

• Important for full deployment
• The service_manifest.yml's version needs to fit your deployment's



CERRID #######
PAGE 69

69

TLP:CLEAR

Good examples – ElfParser
• Package a compiled executable
• Parse the output of the executable to fill ResultSections for the user

https://github.com/CybercentreCanada/assemblyline-service-elfparser



CERRID #######
PAGE 70

70

TLP:CLEAR

Good examples – Api Vector
• Use a public library (apiscout, lief)
• Load an external file
• Use an updater

https://github.com/CybercentreCanada/assemblyline-service-apivector



CERRID #######
PAGE 71

71

TLP:CLEAR

Good examples – UrlDownloader

https://github.com/CybercentreCanada/assemblyline-ser
vice-urldownloader/

• stage: POST
• file_required: false
• is_external, allow_internet_access: true
• uses_tag_scores, uses_metadata, uses_temp_submission_data: true



CERRID #######
PAGE 72

72

TLP:CLEAR

CERRID #######
PAGE 72

72

TLP:CLEAR

Workshop time!



CERRID #######
PAGE 73

73

TLP:CLEAR

Creating the new MBInfo module
• Workshop: 

https://github.com/CybercentreCanada/assemblyline-training-first2023

• Documentation: 
https://cybercentrecanada.github.io/assemblyline4_docs/

• MalwareBazaar: 
https://bazaar.abuse.ch/



CERRID #######
PAGE 74

74

TLP:CLEAR

CERRID #######
PAGE 74

74

TLP:CLEAR

Time to get serious
How to get your deployment ready for 

multiple millions of files



CERRID #######
PAGE 75

75

TLP:CLEAR

Preface
Based on our current biggest production environment



CERRID #######
PAGE 76

76

TLP:CLEAR

CERRID #######
PAGE 76

TLP:CLEAR

76

Node 
• Don’t use nodes that are too small, Elastic/Redis can use a lot of 

resources
• Minimum: 8 cores / 32 GB
• What we use: 16 cores / 64 GB

• The minimum amount of nodes required by your cluster is the amount 
of Elastic pods that you have

• We have 12 Elastic pods so our deployment auto-scales from 12 nodes to 72 
nodes



CERRID #######
PAGE 77

77

TLP:CLEAR

CERRID #######
PAGE 77

TLP:CLEAR

77

Ingestion
• For high volume ingestion, do not use /api/v4/submit/
• Use this instead: /api/v4/ingest/

• Tailored for rate limiting if AL can't keep up
• Will queue submission for processing later

• If ingestion slows down the UI because the rate is too high
• separateIngestAPI:true in your values.yml files
• Spins up dedicated pods for ingestion



CERRID #######
PAGE 78

78

TLP:CLEAR

CERRID #######
PAGE 78

TLP:CLEAR

78

File storage
• Do not use the provided minio container for file storage

• Not that minio is not good, we just haven’t spent any effort making the chart deploy it correctly
• Use either:

• Azure blob storage, if you are on AKS
• Amazon S3 if you are on AWS
• Deploy your own Minio with redundancy or any other well-supported S3 compatible file storage

• Don’t put your file storage secrets in your values.yml file, use Kubernetes secrets instead
• Example:

internalFilestore: false
configuration:
  filestore:
    storage:
      - "azure://<blob_store_name>.blob.core.windows.net/storage?access_key=${FILESTORE_PASSWORD}"
    cache:
      - "azure://<blob_store_name>.blob.core.windows.net/cache?access_key=${FILESTORE_PASSWORD}"



CERRID #######
PAGE 79

79

TLP:CLEAR

CERRID #######
PAGE 79

TLP:CLEAR

79

Redis
• All messaging passed to services and Dispatcher/Ingester-shared memory space is 

stored in Redis
• Redis is our only component that cannot be scaled
• You should tweak Ram / CPU / Threads requirements to fit your need

• We use the following values in values.yml:
redisVolatileIOThreads: 5
redisVolatileReqCPU: 4
redisVolatileLimCPU: 4
redisVolatileReqRam: 4Gi

redisPersistentIOThreads: 3
redisPersistentReqCPU: 2
redisPersistentLimCPU: 2
redisPersistentReqRam: 8Gi
redisPersistentLimRam: 32Gi



CERRID #######
PAGE 80

80

TLP:CLEAR

CERRID #######
PAGE 80

TLP:CLEAR

80

Dispatcher
• You can change the number of threads Dispatcher uses
• Also make sure Dispatcher is reserved a full core and has enough RAM

• NOTE: It’s a Python process so don’t give it more than a core

• We use the following values.yml config:

disptacherShutdownGrace: 1800
dispatcherResultThreads: 8
dispatcherFinalizeThreads: 8
dispatcherReqCPU: 1
dispatcherLimCPU: 1
dispatcherReqRam: 2Gi
dispatcherLimRam: 4Gi



CERRID #######
PAGE 81

81

TLP:CLEAR

CERRID #######
PAGE 81

TLP:CLEAR

81

Expiry
• With big data input comes big data deletion
• We gave Expiry more cores and more workers to be able to expire all 

that data
• Here what we use in our values.yml:
expiryReqCPU: 2
expiryLimCPU: 4
configuration:
  core:
    expiry:
      workers: 50
      delete_workers: 5



CERRID #######
PAGE 82

82

TLP:CLEAR

CERRID #######
PAGE 82

TLP:CLEAR

82

Scaling
• Use cpu_overallocation to make sure the cloud 

node autoscaler works
• Use a value between 1.05 to 1.10 (105% to 110%)

• overallocation_node_limit will determine your 
maxmimum amount of nodes

• min_instances determines the minimum number of 
service pods loaded

• We use 2 so our reaction time is faster but that costs 
more money

• cpu_reservation is the percentage of the required 
max CPU for a service that will be reserved by 
Kubernetes

• The higher the value, the less time the services fight 
for CPU time as their CPU usage is reserved, but that 
comes at the price of a higher cost!

Our values.yml looks like this:

configuration:

  core:

    scaler:

      cpu_overallocation: 1.05

      overallocation_node_limit: 72

      service_defaults:

        min_instances: 2

  services:

    cpu_reservation: 0.7



CERRID #######
PAGE 83

83

TLP:CLEAR

CERRID #######
PAGE 83

TLP:CLEAR

83

Auto-scalers
• The scaler component is dedicated to managing services 
• To make sure you have enough core components to handle the 

service load you can adjust the max number of components in the 
values.yml files

• Here’s how we’ve setup ours:
dispatcherInstancesMax: 25
ingestAPIInstancesMax: 50
serviceServerInstancesMax: 50
dispatcherTargetUsage: 40



CERRID #######
PAGE 84

84

TLP:CLEAR

CERRID #######
PAGE 84

TLP:CLEAR

84

Datastore
• Because you’ll have more data you’ll need more 

Elastic pods

• To make the most out of those pods they will need 
more CPU

• Match the request / limit of CPU so Elastic does not 
fight with services for CPU time.

• The size of the index will be larger, Elastic will 
need more RAM to process the queries

• To take advantage of the distributed computing, 
since Elastic has more nodes, it will need more 
shards so each node gets busy enough

• If you’ve deployed your cluster before adjusting the 
shard, you’ll have to use the fix_shards CLI command 
to edit the shard count on affected indices

Our biggest production system has 4.7TB of 
index with 1.8 Billion documents

Our values.yml looks like this:

elasticEmptyResultShards: 16
elasticFileShards: 16
elasticResultShards: 36
elasticSubmissionShards: 24
datastore:
  replicas: 12
  resources:
    requests:
      cpu: 4
      memory: 12Gi
    limits:
      cpu: 4
      memory: 20Gi



CERRID #######
PAGE 85

85

TLP:CLEAR

CERRID #######
PAGE 85

85

TLP:CLEAR

What does the future hold for Assemblyline?



CERRID #######
PAGE 86

86

TLP:CLEAR

Malware Archive
• Save Assemblyline submissions forever
• More file-centric view of Assemblyline with the ability to:

• Add comments on files
• Add labels to files
• Find related files based on tags/labels
• See trends for different tags/labels

• The file/submission part of the malware archive will be able to be 
searched/browsed as part as the live data as well



CERRID #######
PAGE 87

87

TLP:CLEAR

Yara Retro-hunt
• Run a Yara rule on the full file set of Assemblyline or on files kept in 

the archive only
• View the progress of your scan 
• View previous Retro-hunt scans by you or any other users in the 

system 
• Supports the classification engine so you can limit who can see the 

scan and the files that are returned from the hunt are only files that 
you can see



CERRID #######
PAGE 88

88

TLP:CLEAR

• Allow the Assemblyline API/UI to query external sources for hashes and 
IOCs using a plugin interface

• Plugins are: 
• Micro relay web services that you load in your infrastructure
• Have a defined output that the UI can display
• Only a small configuration is needed so the UI knows the plugin exists
• Template and examples will be available so you can have inspiration to write your own 

for your own services
• Plugins that will be available out-of-the-box:

• VirusTotal
• Malware Bazaar
• Another AL instance

External query plugins



CERRID #######
PAGE 89

89

TLP:CLEAR

CERRID #######
PAGE 89

89

TLP:CLEAR

That’s all folks!
Get in touch with us if you need help or want 
to build a closer relationship with our team 

assemblyline@cyber.gc.ca
discord.gg/GUAy9wErNu


