

The Impact of Honeynets for CSIRTs

18th Annual FIRST Conference June 28th 2006

DFN-CERT Services GmbH

Jan Kohlrausch and Jochen Schönfelder

- DFN-CERT: <u>Computer Emergency Response</u>
 <u>Team for German research network (DFN).</u>
- Constituency are mainly German universities and research institutes.

- Honeypots at the DFN-CERT
 - Participant of the eCSIRT and leurre.com projects.
 - Deployment of nepenthes sensors to capture known malware.
 - Use of sensor networks to collect netflow data.
 - Import and integration of this data into a relational database.
 - Support for incident handling service.
 - Identification of compromised systems.
 - Database allows to find correlations between incidents.
 - Compilation of statistics showing current situation.

- Current situation, what we can see:
 - Massive non-selective compromise of systems for building bot-networks.
 - Abuse of bot-networks for DDoS attacks and phishing attacks.
 - Vulnerable systems are identified by massive scanning activity (e.g. class-B networks).
 - Time interval from publication of vulnerability to exploit decreases constantly.
 - Number of zero-day exploits for unknown vulnerabilities increase constantly.
 - Web-browser and common server programs are investigated by black-hats for unknown vulnerabilities.

- Current situation, what is difficult for us to see at the moment:
 - Selective attacks:
 - Since selective attacks do not leave behind any obvious traces they are in general very difficult to detect.
 - No obvious network activity originates from compromised hosts.
 - Early deployment of zero-day exploits:
 - How to distinguish from known exploits?
 - Early deployment of zero-day exploits is nearly invisible in background noise!

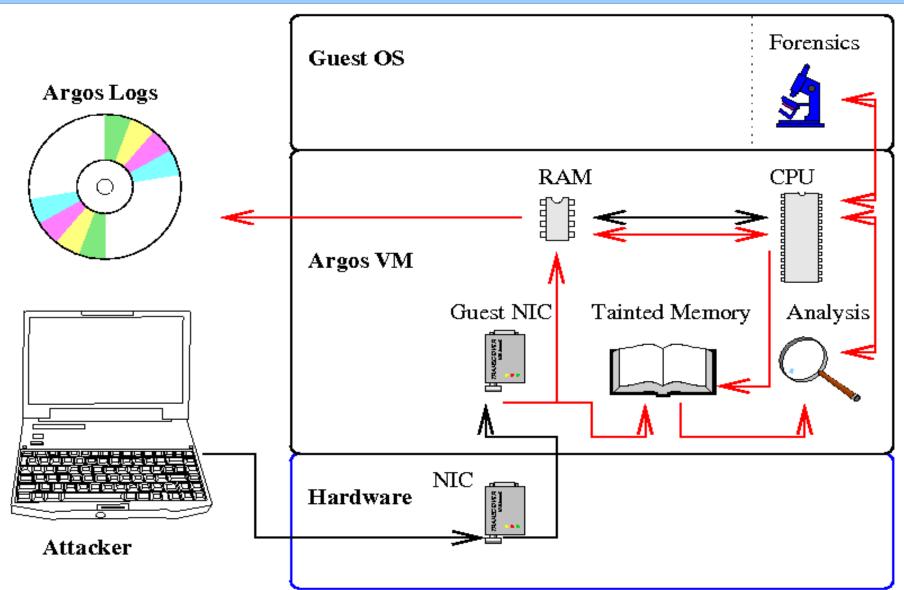
Honeynet Projects

- Ecsirt and leurre.com
 - Deployment of widespread network of low-interaction honeypots.
 - Malware (e.g. trojans and exploit code) can be automaticly captured (by nepenthes sensor).
 - This provides help to track down IRC based bot networks.
 - Compilation of statistics concerning abuse of known vulnerabilities can be done.

Honeynet Projects

- Ecsirt and leurre.com
 - Advantage:
 - Identification of compromised systems:
 - Scanning systems
 - Known internet worms
 - Approaches are very effective concerning known vulnerabilities and non-selective attacks.
 - Disadvantage:
 - Detection of selective attacks and zero-day exploits is beyond the scope of these projects!
 - That is the aim of the NoAH project!

- NoAH: European <u>Network of Affined Honeypots</u>.
 - Ongoing research project.
 - Contact to international sites.
 - DFN-CERT will deploy demonstrator.
- Homepage: http://www.fp6-noah.org
- Major aims:
 - Distributed Network of honeypots to detect zero-day exploits and internet worms
 - Generate and disseminate signatures of found vulnerabilities and exploits.
 - Deploy a demonstrator.



- Hybrid architecture:
 - Deployment of low-interaction as well as high-interaction honeypots.
 - Low-interaction honeypots monitor IP addresses and relay connections to high-interaction honeypots.
 - Design allows to easily deploy low-interaction honeypots in arbitrary networks (e.g. ISP, company, home-user, CSIRT)
- High-interaction honeypots include Argos virtual machine.

- Argos:
 - Developed at Vrije Universiteit Amsterdam.
 - Based on *qemu* virtual machine.
 - Designed to detect exploits for buffer overflow and related vulnerabilities.
 - Tagging of all Network data.
 - Monitor use of tagged data.
 - Raise alert, if
 - Tagged data is executed.
 - Tagged data is loaded into EIP.
 - Tagged data is exclusively used in system call.

- NoAH's benefits for CSIRTs:
 - Detection of zero-day vulnerabilities
 - Tracking down selective attacks
 - Analysis of unknown exploit code
 - Analysis of potential vulnerabilities
- Helps to identify the attacks and vulnerabilities to keep attention to.

- Detection of zero-day vulnerabilities:
 - Potential to cover a broad range of IP addresses in different networks.
 - Low-interaction components are used as relays to highinteraction honeypots.
 - Integration of CSIRTs, companies, ISPs, and home-users (honey@home) into the NoAH architecture.
 - Argos containment environment allows to generate accurate signatures for vulnerabilities and exploits.
 - Signatures and alerts can be distributed very quickly.

- Detection of selective attacks:
- Why?
 - Attacker is prepared and motivated to attack the target.
 - Attack will be more sophisticated compared to nonselective attacks.
 - Better chance to detect zero-day exploits.
 - Selective attacks have usually higher impact for the victim.

- How to attract an attacker?
 - Attractive can be services, position (IP address), DNS name, and bandwidth.
 - Webservice of honeypot can provide (faked) research results or other attractive data (Clifford Stoll's "Cuckoo's Egg").
 - Honeypot is located in network of company or research institute.
 - DNS name can pretend to be an attractive target (e.g. router, server).

- How to use NoAH's architecture to track down selective attacks:
 - Low-interaction components (relays) can be easily integrated into arbitrary networks.
 - High-interaction honeypots (e.g. argos) allow to provide real services (web server).
 - NoAH components can be deployed in sensitive networks with acceptable risk for the deploying site.
 - Honeypot data is analyzed at the NoAH core.
 - Deploying sites do not need to spend effort into the analysis.
 - Results are distributed to the affected sites.

- Analysis of unknown exploit code:
 - Some products exist for monitoring malware at execution time (e.g. norman sandbox).
 - These products do not directly support the analysis of unknown exploit code:
 - Which vulnerability is being exploited?
 - Is the vulnerability already known?
 - Is the exploit working at all?

- Analysis of unknown exploit code:
 - Exploit code can be analysed and identified using argos:
 - Argos alert indicates succesfull application.
 - Exploit is detected before it gains control over the attacked machine.
 - Exploit code does not have to be fully working (e.g. due to wrong pointer offset).
 - Exploit can be identified by the corresponding argos signature.

- Analysis of potential Vulnerabilities:
 - My browser crashes, is this an unknown security problem?
 - Yes, if sensitive memory structures are overwritten by user data.
 - Argos can solve this problem:
 - Deploy the browser in the argos containment environment.
 - If argos raises an alert, a security problem can be expected.

- Thank you!
- Questions?