
KRvW
Associates

© 2006, Cigital & KRvW Associates

Next Steps in Bridging the Gap
Between Incident Handling and

Software Development

KRvW
Associates

© 2006, Cigital & KRvW Associates

Outline
The Problem
Security touchpoints
and collaboration
opportunities

KRvW
Associates

© 2006, Cigital & KRvW Associates

The Problem

© 2004, Cigital & KRvW Associates

KRvW
Associates

© 2006, Cigital & KRvW Associates

Quiz: What’s wrong with this code snippet?

int main(char **argv, int argc)

{

char buf[10];

strcpy(buf, argv[1]);

}

Dev answer: No input bounds checking

CSIRT answer: Buffer overflow that can lead to
execution of arbitrary code

Both answers are correct, but quite different…

KRvW
Associates

© 2006, Cigital & KRvW Associates

Let’s explore those differences a bit
Two valid perspectives

Dev’s answer describes the
code issue
CSIRT’s describes the
resulting attack issue

Fundamentally different ways
of viewing things

Build vs. break
And it only gets worse from
here

KRvW
Associates

© 2006, Cigital & KRvW Associates

How dev sees the CSIRT
Defend the “perimeter” with a firewall
and IDS/IPS

“Only ports 80 & 443 are allowed
through my firewall”

Over reliance on crypto
“You MUST use SSL”

“Review” products when they’re done
“We use the latest pen testing
tools on all production apps”

Disallow that which they don’t
understand

“Extensible systems (Java and
.NET) are dangerous”

All they do is tell us “no, you may not
do that”

The “security ops guy” does not
really understand software
development.

KRvW
Associates

© 2006, Cigital & KRvW Associates

How the CSIRT sees dev
Narrow minded focus on functional
spec

“If the customer didn’t ask for
it, it’s not our job”

Doesn’t study attack methods and
tools

“My boss doesn’t require me
to”

Can’t protect apps from common
attacks

“What’s the big deal about
cross-site scripting?”

Won’t stop making the same
coding mistakes

“But I always use strcpy()”
Dev often doesn’t appreciate how

dangerous the net is

KRvW
Associates

© 2006, Cigital & KRvW Associates

What’s missing in the CSIRT perspective?
Security must be built into the software to be effective

Plugging it in later is futile

A perimeter security view of the world is antiquated and
unrealistic

…and has been for some time

An entire room full of firewalls, IDSs, IPSs, fingerprint scanners,
and surveillance cameras will not protect our information from

bad software

KRvW
Associates

© 2006, Cigital & KRvW Associates

What’s missing in the dev perspective?
Software developers tend to focus on functional spec

Very good at building things that perform to customer
needs
Not often as good at developing code that resists attack

Software developers often underestimate the threats

Thinking about building things vs. thinking about breaking thing
What’s the difference between a civil and a mechanical
engineer?

KRvW
Associates

© 2006, Cigital & KRvW Associates

KRvW
Associates

© 2006, Cigital & KRvW Associates

Software security lessons
Understanding how attackers break software tends to be
knowledge and experience intensive

Reading stories is fine, but there’s no substitute for time in
cockpit

But the dev guys don’t know what attacks look like in a real
world context

We do…

Yet, when the CSIRT participates at all in the dev process it is
in the last phase to do the dreaded application penetration test

What’s wrong with penetration testing?

KRvW
Associates

© 2006, Cigital & KRvW Associates

Password
Guessing

Self-Replicating Code

Password Cracking
Exploiting Known Vulnerabilities

Burglaries

Hijacking
Sessions

Networked Management Diagnosis

GUI

Automated Probes/Scans

www Attacks

Distributed
Attack Tools

Staged Attack

Attack Sophistication

Intruder Knowledge

LOW

HIGH

1980 1985 1990 1995 2000

Disabling Audits

Back Doors

Sweepers

Sniffers

Packet Spoofing
Denial of Service

“Stealth”/Advanced
Scanning Techniques

Cross-Site Scripting

Attacks are evolving

KRvW
Associates

© 2006, Cigital & KRvW Associates

Breaking stuff is important
Learning how to think like an
attacker is essential
Do not shy away from carrying
out attacks on your own stuff

Engineers learn from
stories of failure

Attacking is fun! Fun is good!

KRvW
Associates

© 2006, Cigital & KRvW Associates

Further reading list
Security Tracker – http://www.SecurityTracker.com
Risks Digest – http://www.risks.org
Phrack – http://www.phrack.org
Full Disclosure –
http://archives.neohapsis.com/archives/fulldisclosure/
Rootkits – http://www.rootkit.com
US CERT – http://www.us-cert.gov
OWASP – http://www.owasp.org

Secure Coding List – http://www.securecoding.org/list/
Build Security In – http://BuildSecurityIn.us-cert.gov

KRvW
Associates

© 2006, Cigital & KRvW Associates

Incident Handling functions
Unlike software developers, Incident Handlers have spent years doing

Protecting networks and systems from attack
Detecting attacks when they occur
Responding to detected attacks to protect business interests

Resulting knowledge base
Attack tools
Attack techniques
Defense tools

We have an arguably healthy level of mistrust

KRvW
Associates

© 2006, Cigital & KRvW Associates

How about a hybrid solution?
We should be able to find a way to help the dev team benefit
from the knowledge that we have built up, right?

How about integrating ourselves in the dev process?

Dev does the software, but we contribute attack knowledge
and experience

Best of both worlds? (Maybe, maybe not)

Let’s explore some ideas, but first…

KRvW
Associates

© 2006, Cigital & KRvW Associates

Setting the stage
It is vital to facilitate the collaboration carefully

Cooperative, not adversarial
Constructive, not destructive

All participants must perceive a common goal
Protect the business

It helps to have an assertive but non-threatening moderator

Now, let’s consider how this might work

KRvW
Associates

© 2006, Cigital & KRvW Associates

Software security
touchpoints

© 2004, Cigital & KRvW Associates

KRvW
Associates

© 2006, Cigital & KRvW Associates

Software security touchpoints

KRvW
Associates

© 2006, Cigital & KRvW Associates

Adopting the touchpoints

KRvW
Associates

© 2006, Cigital & KRvW Associates

Touchpoint 1: Code review
Code review is a necessary evil
Better coding practices make
the job easier
Automated tools help catch silly
errors

Fortify/dev (Cigital rules)

Implementation errors do
matter

Buffer overflows can be
uncovered with static
analysis
Fortify SCA

Over 500 C/C++ rules
Over 100 Java rules

Tracing back from vulnerable
location to input is critical

Software exploits
Attacking code

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP1: Code review
OutputsActivitiesInputs

Static Code Analysis

Documentation

Code
Documentation

(optional)
Standards
Platform
Language
Framework

Architecture &
Design

Documents

Technical Lead

Prior Analysis
Documents

Source File to
Module

Mappling

Static Analysis Tool
FxCop
Fortify
BOON
BLAST

Identify Input
Points, Problem

Symptoms &
Vulnerabilities
for Additional

Inspection

Set Up
Selected
Tool(s)

Select Source
Files to be
Analyzed

Analysis
Criteria

Knowledge
Management

System

List of
Categorized
Prioritized

Risks

Run Tool(s)

Analyze Tool
Output

Identify,
Categorize &

Prioritize
Risk(s)

Run Tool(s)
Again?

YES

NO Synthesize
Results

Updated List of
Categorized

Prioritized Risks

Knowledge
Management

System

Tool Output

Source
Files to

be
Analyzed

Configured
Tool(s)

Vulnerable
Code &

Auto Doc

Vulnerability
Documentation

There are many ways to
apply code review
technology
Use a tool
Integrate into the build

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP1: How can the CSIRT help?
Not many infosec engineers
are proficient at today’s high
level languages
How about helping evaluate a
finding presented by a
scanning tool?

“Have attacks against this
coding issue been seen
elsewhere?”

Useful?
Maybe, maybe not…
Depends on the people

KRvW
Associates

© 2006, Cigital & KRvW Associates

Touchpoint 2: Architectural risk analysis
To assess and understand the risks, ask questions:

What is the likelihood of an attack?
What does the software do to support your organization’s
mission?
Is there a disaster recovery plan?
What would the impact be if the software were unavailable?
What is a tolerable down time?

Whom should you ask?
Software owner
IT manager
Key users

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP2: Architectural risk analysis
Designers should not do this
Build a one page white board
design model (like that)
Use hypothesis testing to
categorize risks

Threat modeling/Attack
patterns

Rank risks
Tie to business context
Suggest fixes
Repeat

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP2: Risk analysis
Architectural Risk Analysis

Inputs OutputsActivities

Perform Attack
Resistance

Analysis

Perform
Ambiguity
Analysis

Perform
Underlying
Framework
Weakness
Analysis

Map
Applicable Attack

Patterns

Identify General
Flaws

Non-Compliance
Show where
guidelines are not
followed

Show Risks and
Drivers in

Architecture

Ponder Design
Implications

Unify
Understanding

Uncover Ambiguity
Identify
Downstream
Difficulty
(Sufficiency
Analysis)
Unravel
Convolutions
Uncover Poor
Traceability

Find & Analyze
Flaws in

COTS
Frameworks
Network Topology
Platform

Identify Services
Used By

Application

Documents

Security
Analyst

Generate Separate
Architecture

Diagram
Documents

Documents
Map Weaknesses

to Assumptions
Made by

Application

Attack Patterns

Show Viability of
Known Attacks

Against Analogous
Technologies

Architectural Risk
Assessment

Report

Software
Flaws

Documents

Attack
Patterns

Exploit Graphs

Secure Design
Literature

Documents

Requirements Architectural
Documents

Regulatory
Requirements/

Industry
Standards

Build One Page
Architecture Overview

External
Resources

Mailing Lists
Product
Documentation

Start by building a
one page overview
of your system
The apply the three
step process we will
describe more fully
later

Attack resistance
Ambiguity
analysis
Weakness
analysis

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP2: How can the CSIRT help?
Participate in architecture
discussions to help question
assumptions
Attack resistance

Knowledge base of
historical attacks

Weakness analysis
Can help rate the severity
and likelihood of
architectural weaknesses

Ambiguity analysis
Help identify design
ambiguities

KRvW
Associates

© 2006, Cigital & KRvW Associates

Touchpoint 3: Penetration testing
A very good idea since software is bound in
an environment
How does the complete system work in
practice?

Interaction with network security
mechanisms
Firewalls
Applied cryptography

Penetration testing should be driven by risks
uncovered throughout the lifecycle
Abuse cases also useful in defining
scenarios

Not a silver bullet!

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP3: How can the CSIRT help?
“Pen testing” has been the
purview of infosec in many
organizations for years
If team is sufficiently
knowledgeable on attacks, they
can ensure realism

Be wary of over reliance on
tools
Best testers use tools as
starting points only

Use risk analyses to prioritize
and optimize efforts
Human judgment is important

KRvW
Associates

© 2006, Cigital & KRvW Associates

Touchpoint 4: Security testing
Test security functionality

Cover non-functional requirements
Security software probing

Risk-based testing
Use architectural risk analysis results to drive scenario-
based testing
Concentrate on what “you can’t do”
Think like an attacker
Informed red teaming

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP4: Risk-based testing
Identify areas of potential risk in the system

Requirements
Design
Architecture

Use abuse cases to drive testing according to risk
Build attack and exploit scenarios based on identified
risks
Test risk conditions explicitly

Example: Overly complex object-sharing system in Java
Card

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP4: How can the CSIRT help?
Can help testers develop
realistic test plans and
scenarios
Can share attack pattern
knowledge base with testers
and explain significance
Provide attack examples, tools,
exploits, etc., to testers

KRvW
Associates

© 2006, Cigital & KRvW Associates

Touchpoint 5: Abuse cases
Use cases formalize normative behavior (and assume correct
usage)
Describing non-normative behavior is a good idea

Prepare for abnormal behavior (attack)
Misuse or abuse cases do this
Uncover exceptional cases

Leverage the fact that designers know more about their
system than potential attackers do
Document explicitly what the software will do in the face of
illegitimate use

Think like an attacker!

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP5: Abuse cases
Activities OutputsInputs

Abuse Cases

Identify
Threats Document

Threats

Approved?
NO

YES

SA & BAs

SASecurity Analyst (SA)
Requirements Analysts (RAs)

Create Anti-
Requirements

Revise
Threats

Review
Threats

SA

SA

Review Anti-
Requirements

SA & BAs

Approved?

Create Attack
Model

YES

Review Attack
Model

Approved?

Revise
Anti-

Requirements

NO

Documentation

Requirements

Use Cases

Requirements
Analyst-
Business

Attack
Patterns

Requirements
Analyst-
Technical

NO

Revise
Attack Model

SA

Create Misuse
and Abuse

Cases

Review
Misuse and

Abuse Cases

Approved? NO
Revise

Misue and
Abuse Cases

YES

Analyze and
Rank Misuse
and Abuse

Cases

YES

Review
Ranked

Misuse and
Abuse Cases

Approved?

SA & BAs

SA & BAs

YES

NO

Revise
Ranked

Misuse and
Abuse Cases

Deliverable Documents

Ranked Misuse
and Abuse

Cases

Attack Model
-- Threats
-- Attack Patterns

SA & BAs

SA

Security
 Analyst

Security
 Analyst

Knowledge
Management

System

Starting with attack patterns,
requirements and use cases
Identify anti-requirements
Build an attack model
Determine misuse and abuse
cases

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP5: How can the CSIRT help?
Participate in brainstorming of
abuse case scenarios
Provide documentation to
describe similar historical
attacks

KRvW
Associates

© 2006, Cigital & KRvW Associates

Touchpoint 6: Security requirements
Some security functionality
maps naturally to clear
requirements

Medical data should be
cryptographically
protected
Strongly authenticate
users
Meet GLBA regulatory
guidelines

But do not forget that
security is an emergent
property of a complete
system

An attacker needs to find
only one hole
“Do not allow buffer
overflows” is not much of
a requirement!
“Make it secure” is
vague

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP6: How can the CSIRT help?
May be more familiar with
regulatory issues than dev
team
Cite and research applicable
regulations and laws

KRvW
Associates

© 2006, Cigital & KRvW Associates

Touchpoint 7: Security operations
Fine tune the deployed environment to the
specific needs of your application

“Standard OS build” process is not
enough

Use white list methodologies to configure
network, OS, and app environment
Configure and execute event logging within
the application

Application level audit trails
Watch over the app’s “crown jewels”

KRvW
Associates

© 2006, Cigital & KRvW Associates

TP7: How can the CSIRT help?
Can help provide bridge
between dev and ops to help
fine tune op environment to the
specific needs of the app
Can help ops monitors triage
event log triggers 24/7

KRvW
Associates

© 2006, Cigital & KRvW Associates

Will it work?
What roadblocks do you see to
including IT Security in your
dev process?

“They don’t get it?”
“They’ll use the information
against us?”
“Not enough time cycles?”
“Great, another thing to
do.”

KRvW
Associates

© 2006, Cigital & KRvW Associates

Discussion

© 2004, Cigital & KRvW Associates

KRvW
Associates

© 2006, Cigital & KRvW Associates

Discussion
Does your CSIRT participate in your dev process now? Other than just
penetration testing?

If so, to what extent?
If not, what would prevent it from happening in your organization?

Which of the described touchpoints are most likely to benefit from
collaboration between dev and CSIRT?

KRvW
Associates

© 2006, Cigital & KRvW Associates

Contact information

Gary McGraw
CTO

Cigital, Inc.
http://www.Cigital.com

gem@Cigital.com

Kenneth R. van Wyk
Principal Consultant

KRvW Associates, LLC
http://www.KRvW.com

Ken@KRvW.com

