WOMBAT: towards a Worldwide Observatory of Malicious Behaviors and Attack Threats

> Fabien Pouget Institut Eurécom January 24th 2006

Observations

- There is a lack of valid and available data
- The understanding of Internet activities remains limited
- This understanding might be useful in many situations:
 - To build early-warning systems
 - To ease the alert correlation task
 - To tune security policies
 - To confirm or reject free assumptions

Research in this Direction... ... Capturing/Collecting Data (1)

A **Honeypot** is an information system resource whose value lies in unauthorized or illicit use of that resource

- Darknets, Telescopes, Blackholes: CAIDA Telescope, IMS, iSink, Minos, Team Cymru, Honeytank
 - ⊠ Generally good for seeing explosions, not small events
 - ☑ Assumption that observation can be extrapolated to the whole Internet

 \boxtimes Can be blacklisted and by passed

 Other Honeypots, Honeytokens: mwcollect, nepenthes, honeytank

Interesting but quite specific collection techniques

Research in this Direction... ... Capturing/Collecting Data (2)

Log Sharing:

Dshield, Internet Storm Center (ISC) from SANS Institute, MyNetWatchman, Symantec DeepSight Analyzer, Worm Radar, Talisker Defense Operational Picture

- ☑ Mixing various things
- \boxtimes No information about the log sources

Research in this Direction... ... Analyzing Data

- Netflow flow level aggregation
 - ☑ Not always fine grained analysis
 - ☑ Information often limited to netflow recorded fields
- Intrusion Detection System alerts and derived tools (Monitoring Consoles)

☑ Analysis as accurate as alerts...

- Modeling
 - ☑ Validation Process and specificity
 - 🗵 A priori knowledge

Conclusions

- We should consider an architecture of sensors deployed over the world
 ... using few IP addresses
- Sensors should run a very same configuration to ease the data comparison
- ... and make use of the honeypot capabilities.

Refined Statement

It is possible to build a framework that helps better identifying and understanding of malicious activities in the Internet.

1. By collecting data from simple honeypot sensors (few IPs) placed in various locations.

2. By building a technique adapted to this data in order to automate knowledge discovery.

Win-Win Partnership

- The interested partner provides ...
 - One old PC (pentiumII, 128M RAM, 233 MHz...),
 - 4 routable IP addresses,
- EURECOM offers ...
 - Installation CD Rom
 - Remote logs collection and integrity check.
 - Access to the whole SQL database by means of a secure web access.

- Partially funded by the French ACI Security named CADHO (CERT Renater and CNRS LAAS)
- Joint Research with France Telecom R&D

EURECOM

40 sensors, 25 countries, 5 continents

Europe

802176 (R01083) 9-93

EURECOM

Some Relevant Details

What is the bias introduced by using honeypots with *low interaction* instead of real systems for the analysis?

> High Interaction Honeypots as 'Etalon Systems': reference for checking port interactivity

Big Picture

- Some sensors started running 2 years ago (30GB logs)
- 989,712 distinct IP addresses
- 41,937,600 received packets
- 90.9% TCP, 0.8% UDP, 5.2% ICMP, 3.1 others
- Top attacking countries

```
(US, CN, DE, TW, YU...)
```

TF-CSIRT 2006

Top operating systems

```
(Windows: 91%, Undef.: 7%)
```

Top domain names

(.net, .com, .fr, not registered: 39%)

http://www.leurrecom.org

16

TF-CSIRT 2006

-[PDP, ECCE'05]

IP addresses observed per sensor per day

HoRaSis: Honeypot tRaffic analySis

- Our framework
- Horasis, from ancient Greek ορασις:

"the act of seeing"

- Requirements
 - Validity
 - Knowledge Discovery
 - Modularity
 - Generality
 - Simplicity and intuitiveness

First step: Discrimination of attack processes

- 1. Remove network influences
- 2. Identify parameters characterizing activities (fingerprint)
- 3. Cluster the dataset according to chosen parameters
- 4. Check consistency of clusters

Identifying the activities

- Receiver side…
 - We only observe what the honeypots receive
- We observe several activities
- Intuitively, we have grouped packets in diverse ways for interpreting the activities

TF-CSIRT 2006

What could be the analytical evidence (parameters) that could characterize such activities?

21

First effort of classification...

• **Source:** an IP address observed on one or many platforms and for which the inter-arrival time difference between consecutive received packets does not exceed a given threshold (25 hours).

We distinguish packets from an IP Source:

- To 1 virtual machine (Tiny_Session)
- To 1 honeypot sensor (Large_Session)

X.X.X.X

- To all honeypot sensors (Global_Session)

[PDP,IISW'05]

Fingerprinting the Activities

Clustering Parameters of Large_Sessions:

- Number of targeted VMs
- The ordering of the attack against VMs
- List of ports sequences
- Duration
- Number of packets sent to each VM
- Average packets inter-arrival time

Parameters

- Discrete values
- Resistant to network influences
- Ex: Ports Sequence

Clustering function:

Exact n-tuplet match

- Generalized values
- Modal properties
- Ex: Nb rx packets

Clustering function:

Peak picking strategy Bins creation

Parameters relevance estimated by the entropy-based Information Gain Ratio (IGR)

 $IGR(Class, Attribute) = \frac{(H(Class) - H(Class \langle Attribute \rangle))}{H(Attribute)}$

[DPD, PRDC'04]

Clusters Consistency

- Unsupervised classification
- Levenshtein-based distance function
 - Concatenated payloads => activity sentences
 - Count deletions, insertions, substitutions btw sentences
 - Pyramidal agglomerative bottom-up algorithm
- Payload Homogeneity

[PD, AusCERT'04]

Splitting Ratio:

Obtained Subclusters

 $\gamma_d = \frac{1}{\# \text{ Sources grouped in the initial Cluster}}$

Discrimination step: summary

Cluster = a set of IP Sources having the same activity fingerprint on a honeypot sensor

Cluster Signature

A set of parameter values and intervals

CLUSTER ID:	IDENTIFICATION:
2145	
FINGERPRINT:	
 * Number Targeted Virtual * Ports Sequence: 2745,208 * Number Packets sent VM * Global Duration: 7s < t < * Avg Inter Arrival Time: * Payloads: yes (DCOM, N 	Machines: 1 2,135,1025,445,3127,6129,139,1433,5000,80 : 33 11s < 1s etbios, WebDav)

Second step: Correlative Analysis of the Clusters

Correlative Analysis of Clusters

Dominant Sets Extraction (1)

- Similar characteristics between clusters
- Clusters as Nodes: graph
- For each analysis, construct several edgeweighted graphs
- a Graphic Theoretic problem of finding maximal cliques in edge-weighted graphs.

TF-CSIRT 2006

[PUD, RR-05]

Dominant Set Extraction (2)

- Maximal Clique problem: NP-hard (even for unweighted graphs)
- Dominant Set Extraction approach
- Based on the solution from Pelillo & Pavan(2003):
 - Dominant set extracted by replicator dynamics
 - Fast convergence to one solution

$$x_i(t+1) = x_i(t) \frac{(Ax(t))_i}{x(t)^T A x(t)}$$

Our Algorithm Step 1 – Define a correlation analysis

Our Algorithm Step 2 – Build the edge-weighted graph

3. Define a similarity function that compares values

4. Insert the values in a similarity matrix (edge-weighted graph)

Our Algorithm Step 3 – Extract Relevant Dominant Sets

5. Apply recursively Pelillo&Pavan technique

{1,2,3}
{1,4,5}

Matrices in use

- 8 distinct matrices having developed.
- 3 distinct similarity functions have been defined

Matrix Name	Similarity Meaning btw Clusters
A_Geo	Distribution of attacking countries
A_Env	Distribution of targeted environments
A_OSs	Distribution of attacking OSs
A_IPprox	IP proximity of attacking sources
A_TLDs	Distribution of attacking Top-Level Domains
A_Hostnames	Attacking machine types
A_ComIPs	Shared attacking IPv4 addresses
A_SAX	Temporal evolution over weeks

Results (1): A_Geo

	Dominant Set ID	# Clusters	Corresp. Peaks
	ID 1	20	{CN}
	ID 2	14	{CN,US}
:	ID 3	12	{YU}
	ID 4	11	{YU,GR}
	ID 5	10	{CN,US,JP}
	ID 6	6	{CN,KR}
	ID 7	10	{CN,CA}
	ID 8	4	{CN,KR,JP}
	ID9	9	{CN,US,TW}

12 distinct activities have been launched

by Sources coming from YU only.

Results (2): A_Env

	Dominant Set ID	# Clusters	Corresp. Peaks
	ID 1	30	{20}
100	ID 2	28	{6}
	ID 3	20	{20,8}
•	ID 4	18	{32}
	ID 5	14	{20,25}
	ID 6	26	{25}
	ID 7	43	{6,31}
	ID 8	10	{8,6}
	ID 9	8	{6,8}
	ID 10	14	{23}
	ID 11	12	{10}
	ID 12	5	{25,20,36}
÷	28 distinct observed a	activities have been gainst Sensor 6 only.	
	- // D -	TF-CSIRT 20	30

EURECOM

Results (3): A_Env & A_Geo

		1	2	3	4	5	6	7	8	9	10	11	12
	1	0	0	0	0	0	4	0	0	0	0	0	1
	2	0	0	0	0	0	0	0	0	0	0	1	1
e.	3	0	7	0	1	0	0	0	0	0	0	0	0
	4	0	7	0	0	0	0	0	0	0	0	0	0
	5	0	0	0	0	0	0	0	0	0	0	0	0
	6	0	0	0	0	0	0	0	0	0	0	0	0
	7	0	0	0	0	0	2	0	0	0	0	0	0
	8	0	0	0	0	0	0	0	0	0	0	0	0
	9	0	0	0	0	0	0	0	0	0	0	0	0

```
7 distinct activities coming from YU Sources only have targeted the sole Sensor 6.
```

Results (4): A_SAX

Correlative Analysis: summary

- We obtain all dominant sets for all similarity combined matrices we have developed
- All groups are interesting case studies
- Each cluster is labeled according to the sets identifiers it belongs to
- Reasoning based on the association and non-association of clusters within sets
- Potential validation by means of Telescopes

			<u> </u>
CLUSTER ID: 1931	IDENTIFI	CATION:	
FINGERPRINT: •Number Targeted Machin •Ports Sequence VM1: {1 •Ports Sequence VM2: {1 •Ports Sequence VM3: {1 •Number Packets sent to •Number Packets sent to •Number Packets sent to •Number Packets sent to •Olobal Duration: < 5s •Avg Inter Arrival Time: < •Payloads: 72 bytes + 1460 bytes + 2	nes: 3 35,4444} 35} 35} VM1: 10 VM2: 3 VM3: 3 1s 244 bytes	CORRELATIVE ANALYSIS: A(SAX): DS 21 A(Env): A(Geo): A(Hostnames): A(Hostnames): A(TLDs): A(TLDs): A(CommonIPs): A(IPprox): A(OSs): DS 3	
	EURECO	TF-CSIRT 2	20

Conclusions (1)

We have demonstrated that it is possible to build a framework which helps better identifying and understanding of malicious activities in the Internet.

1. By collecting data from simple honeypot sensors (few IPs) placed in various locations.

2. By building a technique adapted to this data in order to automate knowledge discovery.

Conclusions (2)

Help feeding the WOMBAT!!

References

- More information on the French ACI Security available at acisi.loria.fr
- Exhaustive and up to date list of publications available at

http://www.leurrecom.org

- F. Pouget, M. Dacier, V.H. Pham, Leurre.Com: On the Advantages of Deploying a Large Scale Distributed Honeypot Platform. Proc. Of the E-Crime and Computer Conference 2005. ECCE'05), Monaco, March 2005.
- F. Pouget, M. Dacier, H. Debar, V.H. Pham, Honeynets: Foundations For the Development of Early Warning Information Systems. NATO Advanced Research Workshop, Gdansk 2004. Cyberspace Security and Defense: Research Issues. Publisher Springler-Verlag, LNCS, NATO ARW Series, 2005.
- E. Alata, M. Dacier, Y. Deswarte, M. Kaaniche, K. Kortchinsky, V. Nicomette, V.H. Pham, F. Pouget, CADHo: Collection and Analysis of Data from Honeypots. In Proc. Of the Fifth European Dependable Computing Conference. (EDCC-5), Budapest, Hungary, April 2005.
- F. Pouget, T. Holz, A Pointillist Approach for Comparing Honeypots. Proc. Of the Conference on Detection of Intrusions and Malware & Vulnerability Assessment. (DIMVA 2005), Vienna, Austria, July 2005.
- J. Zimmermann, A. Clark, G. Mohay, F. Pouget, M. Dacier, The Use of Packet Inter-Arrival Times for Investigating Unsolicited Internet Traffic. In Proc. Of the First International Workshop on Sytematic Approaches to Digital Forensic Engineering. (SADFE'05), Taipei, Taiwan, November 2005.
- P.T. Chen, C.S. Laih, F. Pouget, M. Dacier, Comparative Survey of Local Honeypot Sensors to Assist Network Forensics. In Proc. Of the First International Workshop on Sytematic Approaches to Digital Forensic Engineering. (SADFE'05), Taipei, Taiwan, November 2005.

Removing Network Influences

Examples:

- Duplicates, retransmission, losses, delays, jitter, reordering,etc
- Network and transport layers can address these phenomena...
- ... which can also be part of an attack process
- Hard to discriminate both cases

Solution: [PUD, RR-05]

Exploit the IP Identifier implementation (RFC 791) We have addressed this way the following influences:

