
1Public

Luci Stanescu

9 April 2025

Managing Vulnerabilities 
through SSDLC



Can you imagine a world without 
cybersecurity threats?

2Public



3Photo by Fausto García-Menéndez on Unsplash

https://unsplash.com/@faustogarmen?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/brown-dinosaur-illustration-hYKG311mff8?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash


The process

4

Threat Modelling

Homegrown methodology based 
on best practices

Focus on CIA

Static Code Analysis

Code quality, metrics and insights
Embedded in CI/CD

Improvements over time
Vulnerability Scanning

Homemade scanning solution
Fixed intervals
Gather metrics for insights

Vulnerability Response

Analysis and prioritization
Fixing vulnerabilities prior to release

Pentests

Threat-led pentesting, using 
insights from Threat Modelling

05

01

02 03

04



Knowledge is key

5

Risks can be mitigated, avoided, 
transferred, or accepted.

It’s never a good idea to ignore risks.

Public



6Public

Threat modelling



“ Threat modelling is best done by the engineers that built the 
product.

An opinion by Luci Stanescu

Security Engineering Manager, Canonical

7

Who should perform threat modelling

“

Public



Threat modelling isn’t simple

8

Canonical developed an in-house threat modelling methodology for use by 
projects, based on best practices and focused on CIA aspects of the product.

Public



Threat modelling stages

1. Define the Target of Evaluation (TOE)

2. Identify assets (crown jewels and stepping stones) and data flows (entry 
points, exit points and trust boundaries)

3. Identify and quantify threats

4. Identify mitigating controls

5. Manage residual risk

6. Rinse and repeat

9Public



Pain points

● Out of context product

● Limiting the scope

● Assets without data flows

● Missed assets

● Critical confidentiality asset without confidentiality risks

● Missed inherent risks – existing controls need to be explicit, not implied

10Public



11Public

Static Code Analysis



Static Code Analysis

● Canonical using TIOBE

● Integrating in CI pipelines is best

● Code quality improvements happen

● Consider the risk of gaining a false sense of security

12Public

https://ubuntu.com/blog/canonicals-commitment-to-quality-management


13Public

Vulnerability scanning



Vulnerability scanning: what & why

14

Using an off-the-shelf vulnerability scanner, primarily for distributed artifacts. 

Useful for finding known vulnerabilities in vendored dependencies or 
complex artifacts (e.g. OCI images).

Not useful for finding new vulnerabilities (duh!).

Public



Vulnerability scanning lessons

● Not all scanners are created equal – try multiple options on known (possibly 
synthetic) vulnerable targets.

● Figuring out the frequency is tricky – release time is best.

● Rescan the same artifact – daily is possible with automation!

● Define a process for handling positives (whether true or false).

● Need to manage false positives – automation is necessary for frequent 
scans.

15Public



16Public

Penetration tests



Penetration tests

● Threat-Led Penetration Tests (TLPT) leverages insights from threat 
modelling to help define the scope of the activity.

● Performed after vulnerability scanning to ensure focus on architectural / 
logic issues.

● TLPT mandated by DORA (EU financial sector).

17Public



18Public

Vulnerability response



Panic doesn’t help.
A framework helps ensure consistent handling of 
security issues.

19Public



Things that don’t come naturally

20

Defining product / release lifetime

Scoring and prioritization

Considering mitigations

Announcements

Public



21

Tell people how to 
disclose security issues.

SECURITY.md ❤

Document your 
vulnerability response 
process.

If on GitHub, use the 
repository security 
advisories feature.

Public

https://docs.github.com/en/code-security/security-advisories/working-with-repository-security-advisories/about-repository-security-advisories
https://docs.github.com/en/code-security/security-advisories/working-with-repository-security-advisories/about-repository-security-advisories


22Public

Security documentation



Everybody advocates for documentation.

Until they have to write it themselves.

23Public



Security documentation framework

● Define your audience

● Discuss risks

● Discuss information security (loss, incorrect retention, unlawful disclosure, 
etc.)

● Cover security-sensitive functions (e.g. authentication)

● Cover use of cryptography

● Include how-to guides

24Public



25

How it’s used

Overview of what 
crypto tech the 
project uses for 
what

Cryptography topics

Why it’s used

The protected 
data (to 
understand 
implications)

What is used

What libraries, 
low-level or high 
level primitives

What is exposed

How can users 
influence crypto 
functions

Public



Security how-to guides

● Pre-deployment / deployment security checklist

● Managing authentication and authorization

● Backups

● Hardening guide

● https://maas.io/docs/how-to-enhance-maas-security

● https://documentation.ubuntu.com/juju/latest/user/howto/manage-your-deploy
ment/harden-your-deployment/

26Public

https://maas.io/docs/how-to-enhance-maas-security
https://documentation.ubuntu.com/juju/latest/user/howto/manage-your-deployment/harden-your-deployment/
https://documentation.ubuntu.com/juju/latest/user/howto/manage-your-deployment/harden-your-deployment/


Thank you! Questions?

27Public


