CVE/FIRST VulnCon 2025

Resolution Revolution:
Turbocharging Security Ticketing Timelines

Joseph Seasly
Shruti Datta Gupta

Skyrocketing vulnerabilities (through 2024)

CVEs Published Per Year (2010-2024)

7]
1N}
>
O
Y

(o]

—

(]
Q

S

>
=

Vulnerabilities: 2025 on pace for a record year!
CVEs Published Per Year (2010-2025%*)

0
L
>
O
Y—

(@)

—

[}
QO

S

=)
=2

2020 2022 2024

*2025 projected based on the current pace as of March 31st, 2025

Reality: Limited Security Resources

Security ticket overload
Unmanageable deadlines

High developer-to-security ratio

Staffing levels not keeping pace

Reality: Knowledge Challenges

Scattered communication

Fragmented documentation

Gaps in knowledge

Why We Care

Impact of vulnerabilities

Systemic risk

Redistribute bandwidth

i &

Security engineer Developer

Vulnerability expert Product expert

exploit, risk, CVE, CPE, CVSS ... code flow, structure, how it works ...

Fix the vulnerability

Security engineer N _ Developer
Artificial Intelligence

Background: Al Code Fix

Motivation: Pre-empt vulnerabilities

Goal: automate pull-request level fixes

Al Code Fix? Reality Check

Can we do an exact code fix?

Context missing

Complex logic

Code alone not enough

Human insight vital

Al Code Fix: What worked?

Advanced prompting techniques

Quality measurements and logging

Context, context, context

Shifting the Approach

Knowledge + Al

Tailored processes

Proactive solutions

Unified Knowledge Base

How to access: Jira & Slack

Contextual Al

Domain expertise

Capability 1: Code/Config Fixes

Expectation alignment

Varying ticket quality + details

Deliver a representative example

Capability 1: Code/Config Fixes

You are a cyber security expert with specialized knowledge in fixing
vulnerabilities. You will be provided with a vulnerability description.
Generate a secure fix for the issue.

Al Orchestrator .
System prompts with

explanation and examples

Chain of Thought

Security ticket Prompting

<
<

Security Guidance in Fix Recommendations
desired format with explanations

Chain of Thought Prompting
Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11, The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9.

Example code fix

1. Reason for Vulnerable Code

The vulnerability is due to the improper handling and sanitization of user input in the JavaScript file
_ This allows attackers to inject malicious scripts that can be executed in the context of the user's
browser, leading to Cross-Site Scripting (XSS) attacks.

2. Vulnerable Code

The specific vulnerable code snippet in ||| | | | | B is not provided, but a typical example of such vulnerability
might look like this:

// Vulnerable code example

3. Fixed Code
To fix the vulnerability, user input should be properly sanitized before being inserted into the DOM. Using a library like
-can help mitigate this issue. Here is an example of how to fix the code using -

// Fixed code example

var xssAPI = CQ.shared. xS KEG_N);

var yserlnput = getUserinput(); // Function to get user input

var sanitizedlnput = xssAPLgetValidHref(userlnput); // Sanitize user input

4. Reason why the suggested fix should work

The suggested fix works by sanitizing the user input using the -hibrary before inserting it into the DOM. This ensures
that any potentially malicious scripts are neutralized, preventing them from being executed in the user's browser. By using a
trusted library for sanitization, the risk of XSS attacks is significantly reduced, enhancing the security of the application.

Capability 2: Expert Finder

Who solved it before?

Reduce wait time

Collaboration boost

Capability 2: Expert Finder

Pass content of ticket
and metadata

New ticket

Expert identification
and rationale

Search similar tickets

=1 =X
=14

=1
1
;
ID expert
Existing tickets \ " Vector DB

\

(@
(&

Al

Al Orchestrator

Top X experts who
have worked on
similar tickets

Re-ranker
(filter)

Top n similar tickets

Example: Expert Finder

a problem with the JSON structure, which aligns with issues resolved in tickets like -

oads we) cCOMMon cause of er _ has been involved In 1

similar issues related to audience lifecycle state updates and JSON payload errors, making him a suitable SME for this ¢

.
suggested resolution is based on the successiul strategies employed in these past tickets, focusing on correcting the JSO

N payload
and ensuring all necessary fields are included

Capability 3: Best Practices

Scale security guidance

Company/product specific recs

RAG-based approach

Capability 3: Best Practices

Al Orchestrator

Security ticket
(XSS exploit details)

Security Guidance in
desired format

Search company knowledge base
for mitigating XSS

Vector DB

Search results w/ system prompt

Company provided recommendation to mitigate XSS

Company/product specific
security guidance

"BI
'_5

D
D 0

Existing Guidance New Guidance

Example best practice guidance

Summary: Stored Cross-site Scripting (XSS) vulnerability in Adobe _

Vulnerability: Cross-site Scripting (Stored XSS) (CWE-79).

Adobe Specific Recommendations: Since the product is ||| | |} I usc Adobe Approved Libraries for
sanitization such as XSSAPI. More details can be found in the product's tech stack.

Short Term Fix:

- Implement input validation to ensure that all data received from users is sanitized before being processed.

- Use the Adobe approved library XSSAPI to encode or escape user inputs that are output in HTML or JavaScript
contexts.

- Ensure that all dynamic data inserted into HTML or JavaScript is properly sanitized using the XSSFilter library to prevent
malicious code execution.

Long Term Fix:

- Conduct regular security audits and code reviews to identify and mitigate XSS vulnerabilities, focusing on areas where
user input is handled.

- Implement Content Security Policy (CSP) headers to reduce the risk of XSS attacks by specifying trusted sources for
executable scripts.

Capability 4: Similar Tickets

Find references

Discover patterns

Spot systemic issues

Capability 4: Similar Tickets

Al Orchestrator

Search results with system prompt

Security ticket
(XSS exploit details)

Security Guidance in

desired format
‘ Top 3 similar

Trends in past similar XSS tickets

tickets

Re-ranker

Search similar tickets J Top n similar tickets

New tickets Existing tickets Vector DB

Example similar tickets

Ticket Summary:
- Ticket ID: SEC-123
- Summary: XSS issue in product X code repo

Similar Tickets: We have found 97 tickets in the last 90 days that are similar to this ticket.

Top 3 Similar Tickets:

1. Ticket ID: SEC-400
- Summary: XSS in product X
- Similarity Score: 0.911387503

2. Ticket ID: SEC-436
- Summary: Cross-site scripting bug detected in X
- Similarity Score: 0.908890724

3. Ticket ID: SEC-629
- Summary: Injection found - XSS in product X
- Similarity Score: 0.907649279

Status Trends: This data shows a count of the statuses of the 97 similar tickets.
- In Progress: 31

- Open: 64

- Blocked: 2

Severity Trends: This data shows a count of the severity of similar tickets that are UNRESOLVED.
- Number of Unresolved Similar Tickets: 97

- Critical: 9

- High: 28

- Medium: 36
- Low: 24

Feedback & Evaluations

Human feedback mechanisms

Model output evals

Continuous improvement

Learnings

Assess knowledge gaps

Why did this work for us?

Be where developers are

lterate & scale

Key Takeaways

Al can help reduce human toil

Context enriches Al
Empower teams

You can build this too!

Thank you!

Q&A

Connect with us :)

Shruti Datta Gupta

