
Vulnerability Data Analysis with
Google Sheets and Apps Script

for Fun and Profit
Andrew Pollock

Who am I?

● Do a lot of aggregate analysis of CVE metadata
● Like to be able to visually eyeball data for patterns
● Love a good bit of Spreadsheet Engineering

○ Sorting
○ Filtering
○ Pivot tables

● Love JavaScript and Apps Script and a good bit of dynamism

Who are you?

● First time at VulnCon?
● Operates a CNA?
● Has to do vulnerability management at their organization?
● Does vulnerability research?
● How do you do things today?
● What are your hopes and dreams for this workshop?

What are we going to learn today?

● Everything you need to be able to do this on your own
● The wonderful solution that is github.com/bradjasper/ImportJSON
● The JSON REST APIs available for vulnerability metadata

○ CVE List
○ NVD
○ OSV.dev
○ GitHub Advisory Database

● How to create a Google Sheet template to easily get going with JSON REST
APIs

● What’s possible glueing this all together in a Google Sheet

https://github.com/bradjasper/ImportJSON

Why would you want to do this?

● You need to know something about a set of vulnerabilities, by ID
● Quick and dirty vulnerability management by spreadsheet
● Visual inspection
● Anything tabular
● Filtering
● Pivot tables
● Why not?

What you need

● A Google Account (Gmail, Workspace)
● Internet access
● Optional: a browser extension for JSON output presentability

Browsing JSON API output

● I like
https://github.com/arnav-kr/json-formatter
(https://json-formatter.js.org/)

○ Chrome
■ https://chrome.google.com/webstore

/detail/json-formatter/gpmodmeblcc
allcadopbcoeoejepgpnb

○ Firefox
■ https://addons.mozilla.org/firefox/ad

don/json_formatter/
○ Edge

■ https://microsoftedge.microsoft.com/
addons/detail/json-formatter/hdebm
bedhflilekbidmmdiaiilaegkjl

https://github.com/arnav-kr/json-formatter
https://json-formatter.js.org/
https://chrome.google.com/webstore/detail/json-formatter/gpmodmeblccallcadopbcoeoejepgpnb
https://chrome.google.com/webstore/detail/json-formatter/gpmodmeblccallcadopbcoeoejepgpnb
https://chrome.google.com/webstore/detail/json-formatter/gpmodmeblccallcadopbcoeoejepgpnb
https://addons.mozilla.org/firefox/addon/json_formatter/
https://addons.mozilla.org/firefox/addon/json_formatter/
https://microsoftedge.microsoft.com/addons/detail/json-formatter/hdebmbedhflilekbidmmdiaiilaegkjl
https://microsoftedge.microsoft.com/addons/detail/json-formatter/hdebmbedhflilekbidmmdiaiilaegkjl
https://microsoftedge.microsoft.com/addons/detail/json-formatter/hdebmbedhflilekbidmmdiaiilaegkjl

Housekeeping

● We’ve 90 minutes together
● Interactive

○ I’ll give some background
○ I’ll demonstrate
○ We’ll do it together
○ Lather, rinse repeat

● Stop me at any time
● There are no stupid questions!
● This is mildly an “unworkshop”

○ Let’s use it as an opportunity to explore specific use cases together
● I’d love the gift of your constructive feedback, positive or negative

Let’s get into it!

github.com/bradjasper/ImportJSON

● Amazing canned Apps Script for querying JSON REST APIs
● Full credit to

○ Brad Jasper
○ Trevor Lohrbeer

github.com/bradjasper/ImportJSON

● Add this to a Google Sheet and you get these additional functions:
Function Description

ImportJSON For use by end users to import a JSON feed from
a URL

ImportJSONFromSheet For use by end users to import JSON from one of
the Sheets

ImportJSONViaPost For use by end users to import a JSON feed from
a URL using POST parameters

ImportJSONBasicAuth For use by end users to import a JSON feed from
a URL with HTTP Basic Auth

ImportJSONAdvanced For use by script developers to easily extend the
functionality of this library

github.com/bradjasper/ImportJSON

●
○ I highly recommend forking it, in case it disappears completely
○ Consider talking to Brad about taking it over if you like it and are an Apps Script/JavaScript

aficionado

Creating a Google Sheet template with ImportJSON

This means you do the Apps Script legwork
once

1. Copy the Apps Script code
○ https://github.com/bradjasper/ImportJSON/

blob/master/ImportJSON.gs
○ Click the Copy raw file icon
○

2. Create a new Google Sheet
○ https://spreadsheet.new
○ Name it ImportJSON Template

3. Add the Apps Script
○ Extensions ➡ Apps Script
○ Name the project ImportJSON
○ Replace the boilerplate code with what you

copied
○ (Optional) Rename Code.gs to

ImportJSON.gs
○ Click the Save icon
○ Close the Apps Script tab

4. Bookmark this sheet as a template
○ Change the URL from /edit to

/template/preview
○ Bookmark this URL

https://github.com/bradjasper/ImportJSON/blob/master/ImportJSON.gs
https://github.com/bradjasper/ImportJSON/blob/master/ImportJSON.gs
https://spreadsheet.new

Here’s one I prepared earlier

● https://docs.google.com/spreadsheets/d/1Rdo09SBn_5Nf7vg1qMy9uZVdssb
oLC66dR2l0gFlmcc/template/preview

● https://tinyurl.com/ijgstemplate
● https://tinyurl.com/ijgsplayground

https://docs.google.com/spreadsheets/d/1Rdo09SBn_5Nf7vg1qMy9uZVdssboLC66dR2l0gFlmcc/template/preview
https://docs.google.com/spreadsheets/d/1Rdo09SBn_5Nf7vg1qMy9uZVdssboLC66dR2l0gFlmcc/template/preview
https://tinyurl.com/ijgstemplate
https://tinyurl.com/ijgsplayground

🗃 OSV.dev
💻 https://google.github.io/osv.dev/get-v1-vuln

s/
👀 https://api.osv.dev/v1/vulns/CVE-20

24-3094
📖 https://google.github.io/osv.dev/api/
⏳ No rate limit

🗃 GitHub Advisory Database
💻 https://api.github.com/advisories/

👀 https://api.github.com/advisories?cv
e_id=CVE-2024-3094

📖 https://docs.github.com/en/rest/security-ad
visories/global-advisories

⏳ Various rates apply

JSON REST APIs for vulnerability metadata

🗃 CVE List
💻 https://cveawg.mitre.org/api/cve

👀 https://cveawg.mitre.org/api/cve/CV
E-2024-3094

📖 https://cveawg.mitre.org/api-docs/
⏳ Not aware of any rate limiting

🗃 NVD
💻 https://services.nvd.nist.gov/rest/json/cves/

2.0
👀 https://services.nvd.nist.gov/rest/jso

n/cves/2.0?cveId=CVE-2024-3094
📖 https://nvd.nist.gov/developers/vulnerabiliti

es
⏳ Rate limited (less so with an API key)

https://google.github.io/osv.dev/get-v1-vulns/
https://google.github.io/osv.dev/get-v1-vulns/
https://api.osv.dev/v1/vulns/CVE-2024-3094
https://api.osv.dev/v1/vulns/CVE-2024-3094
https://google.github.io/osv.dev/api/
https://api.github.com/advisories/
https://api.github.com/advisories?cve_id=CVE-2024-3094
https://api.github.com/advisories?cve_id=CVE-2024-3094
https://docs.github.com/en/rest/security-advisories/global-advisories
https://docs.github.com/en/rest/security-advisories/global-advisories
https://cveawg.mitre.org/api/cve
https://cveawg.mitre.org/api/cve/CVE-2024-3094
https://cveawg.mitre.org/api/cve/CVE-2024-3094
https://cveawg.mitre.org/api-docs/
https://services.nvd.nist.gov/rest/json/cves/2.0
https://services.nvd.nist.gov/rest/json/cves/2.0
https://services.nvd.nist.gov/rest/json/cves/2.0?cveId=CVE-2024-3094
https://services.nvd.nist.gov/rest/json/cves/2.0?cveId=CVE-2024-3094
https://nvd.nist.gov/developers/vulnerabilities
https://nvd.nist.gov/developers/vulnerabilities

Pro tip: (Chrome) custom search engines

● Chrome
○ chrome://settings/searchEngines
○ Under Site Search add

■ cve ➡ https://cveawg.mitre.org/api/cve/%s
■ nvd ➡ https://services.nvd.nist.gov/rest/json/cves/2.0?cveId=%s
■ ghsa ➡ https://api.github.com/advisories/%s
■ osv ➡ https://api.osv.dev/v1/vulns/%s

Then you can just type in the omnibox

⌨ cve CVE-2024-3094
⌨ nvd CVE-2024-3094
⌨ ghsa CVE-2024-3094
⌨ osv CVE-2024-3094

Now for the fun*

Beginner: Basic (CVE List) CVE metadata

e.g. https://cveawg.mitre.org/api/cve/CVE-2024-21887

We want:

● .cveMetadata.assignerShortName
● .containers.cna.descriptions[].value

=ImportJSON("https://cveawg.mitre.org/api/cve/" & A2,
"/cveMetadata/assignerShortName,/containers/cna/descriptions
/value", "noHeaders")

https://cveawg.mitre.org/api/cve/CVE-2024-21887

Useful things to know

● Named Ranges
○ Useful for more readable and concise formulae

■ See the playground spreadsheet for examples
● Avoiding recalculations

○ Get the data once and then copy (and paste) the formula values
● Needing to do error checking on specific values requires a separate call to

ImportJSON
○ The whole function call has to work
○ Incrementally build up to a single invocation that returns what you want

Beginner-Intermediate: Severity information

● Annoying
○ Is it CVSS v3 or CVSS v3.1?
○ Who knows!

● Need to be more fault-tolerant and try multiple keys
○ =FILTER(

 ImportJSON("https://cveawg.mitre.org/api/cve/" & A2,
"/containers/cna/metrics/cvssV3_1/baseSeverity,/containers/cna/metric
s/cvssV3_0/baseSeverity", "noHeaders"),
 ImportJSON("https://cveawg.mitre.org/api/cve/" & A2,
"/containers/cna/metrics/cvssV3_1/baseSeverity,/containers/cna/metric
s/cvssV3_0/baseSeverity", "noHeaders") <> ""
)

○ May wind up with multiple API calls per CVE

Arrays

● We’re starting to push the friendship
○ Overwriting other populated cells is an

error
● Need to somehow coerce the result into a

single row (and potentially column)
● Your friends

○ UNIQUE – remove duplicates
○ TRANSPOSE – make multiple rows become

multiple columns instead
○ INDEX(1, 1) – return only a specific

row/column (i.e. cell)

Intermediate-Advanced: Vendors and Products

● Really pushes the limits due to variable-sized, matrixed results
● Use TEXTJOIN to merge multiple values into a single cell

○ This may impact on the utility of the data

Experimentation Time

Summary

● Use a template so the initial Apps Script setup is one-time
● Consider using Named Ranges as “constants” for more readable formulae
● If you need the values retrieved only once, consider copying and pasting the

values to avoid unnecessary future recalculations

Thank you!

